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Abstract

This study examines the effects of the change in the shape of landscape 
patches, known as landscape structure, on ecological susceptibility, 
which is defined using the object-oriented method. The aim is to 
determine whether ecological susceptibility is influenced by the shape 
of the landscape patches in the southern basin of the Caspian Sea. 
The multivariate linear regression approach is applied to discover 
the extent to which the mean, median, and weighted average of the 
landscape structure metrics can explain the total variations of the 
ecological susceptibility. To determine the optimal models, an inter-
model comparison is conducted using the Akaike information criterion. 
Sensitivity and uncertainty analyses were performed to determine how 
sensitive ecological susceptibility is to changes in the variables of the 
models and how they behave under varying conditions. The models 
(0.64≥r2≥0.27, p ≤ 0.05) indicate that the landscape structure metrics 
can be applied to predict ecological susceptibility. Examining the mean, 
median, and weighted average of the landscape metrics in estimating 
ecological susceptibility also reveals that the models made by the mean 
and median values have less uncertainty than those developed by the 
weighted average. The results show that the regularity or irregularity 
in the shape of the landscape patches and the degree of contiguity 
of the land use/land cover patches can significantly affect ecological 
susceptibility. Closed deciduous broad-leaf forest patches, closed mixed 
forest patches, and open mixed forest patches can be considered crucial 
land use/land covers to estimate ecological susceptibility.
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susceptibility, landscape structure, subjective, objective, modeling, 
sensitivity, uncertainty
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1 Introduction

Susceptibility, by definition, refers to the extent to 
which a system would suffer from an exogenous 
threatening process or factor in case of exposure, 
regardless of the probability of exposure (Cardona et 
al., 2012). The explanation of the term susceptibility 
proposed in the subject literature differs depending 
on the context in which it is addressed (Beroya-Ei-
tner, 2016). Cardona et al. (2012) describe suscep-
tibility in conservation biology as the extent of an 
organism or ecological community’s suffering if they 
are exposed to a threatening process or factor with-
out considering the likelihood of exposure.

Addressing susceptibility in the biological context 
would provide enormous potential for relevant 
works due to the significant diversity in study ob-
jects and biological levels. Krebs (2009) introduced 
a hierarchical organizational structure in the shape 
of a pyramid for the biological system. The biological 
system is founded on molecules at the base of the 
pyramid, and the next levels are cellular organs, cells, 
tissues, organs, individuals, populations, species, 
communities, ecosystems, and finally, landscapes 
as the uppermost level on the top of the pyramid. 
However, each level of the organization, depending 
on the number of possible ecosystems, can also be 
horizontally extended. Therefore, the concept of 
ecological susceptibility, depending on the purpose 
of the studies, can be applied from both vertical and 
horizontal perspectives. Most efforts to address eco-
logical susceptibility have focused on the upper half 
of the hierarchical organization of the biological sys-
tem, which is bounded by the spectra between indi-
vidual and landscape levels. Human health (children 
and adults) and psychology have been the focus of 
individual-scale susceptibility studies due to their 
importance (see, e.g., Belsky, 2013; Klimkina, 2013; 
Belsky & Pluess, 2016).

Studies at the population level can also be differenti-
ated from the point of the view of the objects of the 
studies, varying from mosquito larvae (Umar et al., 
2008) or the population of the Pallas’s Cat (Brown et 
al., 2005) to the susceptibility of local rice cultivars to 
sitophilus oryzae, the most common rice pest (Ogun-
tola et al., 2019). They can also be differentiated by 

the scale of the studies, from microscopic (Brown et 
al., 2005) to plot level (Oguntola et al., 2019). Both 
animal (see, e.g., Vázquez and Simberloff, 2002; 
Straub et al., 2015) and plant species (see, e.g., 
IUCN, 2010; Trouvé et al., 2020) have been the focus 
of species-level studies to assess their susceptibility 
to external stresses such as environmental stressors 
(Straub et al., 2015) and environmental disturbanc-
es, including fires and temperature increase related 
to climate changes (see, e.g., Vázquez & Simberloff, 
2002; IUCN, 2010; Trouvé et al., 2020).

Studies at the ecosystem level focus on the suscepti-
bility of aquatic ecosystems to environmental stress-
ors in general and on oceans (Tremblay et al., 2015), 
lakes (Qamar et al., 2019; Milecka et al., 2020), rivers 
(Scavia & Liu, 2009; Evans & Scavia, 2013), and gulfs 
(Brock et al., 2009), in particular. Terrestrial ecosys-
tems have received less attention regarding their 
ecological susceptibility. Furthermore, this attention 
has been limited to a certain number of ecosystems, 
including forest ecosystems (Tybirk et al., 2000; 
Mélo et al., 2011; Renard et al., 2012; Vogt et al., 
2007). For decades, scientists have studied the eco-
logical relevance of spatial patterns at this level, and 
some have questioned their suitability to measure 
the performance of a landscape (Frazier & Kedron, 
2017). These doubts arise from uncertainties origi-
nating from three spatial properties of data, includ-
ing distribution, resolution, and scale, which can af-
fect the relationship between ecological processes 
and spatial patterns, but also lead to deviations in 
managerial decisions (Frazier & Kedron, 2017).

At the landscape level, various environmental stress-
ors have been studied from the point of view of 
stressors. Studies in this field include environmental 
impacts (Nascimento et al., 2017), climatic stressors 
such as temperature and precipitation (Zhang et al., 
2009; Knelman et al., 2019), altitude and aspects 
(Zhang et al., 2009; Batar et al., 2021), ecological 
processes such as plant invasions (Myers, 1983), and 
geoenvironmental stressors (Sun et al., 2019 and Ul-
akpa et al., 2020).

Determining the extent of ecological susceptibility 
can be considered as one of the managerial alter-
natives to reduce the negative effects of human ac-
tivities (Pereira et al., 2022). The susceptibility of an 
ecological ecosystem is associated with the services 



Landscape Online – supported by the International Association for Landscape Ecology and its community

Istanbuly et al.             Landscape Online 97 (2022) 1101 - Page 3

provided by those natural systems. Today, the prob-
lem of water pollution and the scarcity of fresh water 
resources is due to the inability of different ecosys-
tems to provide some ecosystem services, and this is 
due to the state of the ecosystem and its susceptibil-
ity to various environmental problems (van Vliet et 
al., 2021; Al-Adamat, 2017; Ouma et al., 2022). The 
relationship between ecological susceptibility and 
key environmental problems has been investigated 
in some studies. These crucial environmental prob-
lems include, but are not limited to, global warming, 
a sharp decrease in forest cover, a decline in biolog-
ical diversity, acid rain pollution, desertification, wa-
ter pollution, and a shortage of freshwater resources 
(Jianping et al., 2014). 

To be more specific, there is an interaction be-
tween ecological susceptibility and global warming, 
in which the effects of global warming are intensi-
fied by increasing the ecological susceptibility of 
ecosystems, and vice versa (Dinh Van et al., 2013; 
Destoumieux-Garzón et al., 2022). Although the 
susceptibility of ecosystems such as forest ecosys-
tems increases due to a sharp decline in forest cov-
er (Bourgoin, 2019; Kupková et al., 2018; Bourgoin 
et al., 2020) and also biodiversity (Weiskopf et al., 
2020; Keesing et al., 2010; Destoumieux-Garzón et 
al., 2022), the decline in forest cover could derive a 
process leading to an increase in ecological suscep-
tibility and consequently weakens the ecosystem 
weaker in the face of destructive processes such as 
soil erosion (Istanbuly et al., 2021). Acid rain pollu-
tion is a very significant challenge, which is related 
to the susceptibility of ecosystems at different levels 
so that if acid rain pollution increases in a given area, 
it becomes a more susceptible area (Grennfelt et al., 
2020; Butler et al., 2019; Tao et al., 2002; Wang et 
al., 2006), while acid rain pollution could have very 
large effects in susceptible areas. Arid and semi-arid 
regions are ecologically susceptible due to the con-
ditions of potential ecological factors, so not paying 
attention to these fragile conditions during human 
activities accelerates the desertification process 
(Hu et al., 2020; Djeddaoui et al., 2017; Afzali et al., 
2021; Istanbuly et al., 2021).

In recent years, many studies have been conducted 
to develop methods, approaches, and even frame-
works by which ecological susceptibility could be as-

sessed (Beroya-Eitner, 2016). For example, the devel-
oped methods can be considered an expert system 
for evaluating the ecological sensitivity index (ESI), 
which is based on a scoring approach (see, e.g., Fer-
rara et al., 1999; Kosmas et al., 1999a, b, c). Accord-
ingly, the higher the index, the higher the ecological 
susceptibility. Studies also showed that coniferous 
forest cover is more sensitive than agricultural and 
broadleaf forest cover (Brandt, 2015). The meth-
odology developed by GIZ (2013) is also based on 
a scoring approach. These methodologies to deter-
mine ecological susceptibility have been widely ap-
plied by Özcan et al. (2018), Abdel Kawy and Belal 
(2011), Salvati et al. (2013), Darwish et al. (2012), 
and Abuzaid et al. (2021). Their efforts focused on 
applying an object-oriented method to determine 
ecological susceptibility, and the object-oriented 
method has not been applied for modeling ecologi-
cal susceptibility. Mirghaed et al. (2018) showed that 
decreases in landscape metric values (the percent-
age of landscape, the number of patches, the larg-
est patch index, and the landscape shape index) of 
forest and rangeland land covers are associated with 
an increase in the rate of soil erosion. O’Neill et al. 
(1988) indicated that the fractal dimension index can 
be included as an indicator by which the degree of 
human manipulation of the landscape can be meas-
ured. Studies by De Paola et al. (2013), Cushman and 
McGarigal (2019), Arora et al. (2021), and Batar et 
al. (2021) revealed that broadleaf forest cover, co-
niferous forest cover, and residential land use have 
moderate ecological susceptibility. However, range-
lands and agricultural land covers have high suscep-
tibility values. The values of ecological susceptibility 
decrease if the percentage of broadleaf forests and 
residential areas increases, while the values of eco-
logical susceptibility decrease if the percentage of 
agricultural lands and rangelands decreases. 

The essence of these initiatives in estimating ecolog-
ical susceptibility shows that the assessments pre-
sented therein strongly depend on expert judgments 
(De Lange et al., 2009). This could be considered a 
disadvantage, as such studies usually do not provide 
precise clarification on how experts apply standard 
methods to reach their judgments (De Lange et al., 
2010). Subjective judgments are based on values, 
emotions, beliefs, and prejudices, and they are a 
reflection of personal background and intentions. If 
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not made with precision and expressed in a prop-
er value framework, they may reduce the intended 
impact and the credit of the evaluator (Matthews, 
1975). 

Due to this inherent weakness of subject-oriented 
methods, object-oriented assessments are in high 
demand due to the repeatability of the results ob-
tained. Such an observation seems valid regardless 
of the field of science in which this issue is addressed. 
Hence, to avoid overwhelming controversies, it is 
necessary to apply more object-oriented methods 
than subjective ones. Object-oriented approaches 
to assess ecological susceptibility are widely con-
sidered when formulating policies to manage natu-
ral resources and the environment. However, there 
are significant challenges when introducing plausi-
ble indicators and/or indices, as assessing ecological 
susceptibility is an overwhelming task due to the 
nonlinearity, complexity, and hierarchy in natural 
systems (Beroya-Eitner, 2016). 

Landscape ecology, however, provides metrics of 
varying degree of complexity that can be applied to 
easily measure the structure, composition, and con-
figuration of the landscape using available data and 
software (Kupfer, 2012). Ecosystem degradation can 
be analyzed by interpreting metric values (Kupfer, 
2012; Cale & Hobbs, 1994). However, the application 
of landscape metrics has its own advantages and 
disadvantages (McGarigal, 2015; Frazier & Kedron, 
2017;) that must be considered before using them. 
Many studies using landscape metrics have applied 
a scale (between 10 and 1000 sq km), in which pat-
tern-process links have attracted the most manage-
rial interest (Kupfer, 2012; Forman & Godro, 1986). 
Despite the scale sensitivity of the shape index (Ru-
tledge, 2003), some landscape metrics, such as the 
proximity index, are sensitive to the resolution of 
the spatial data used to calculate them. As the reso-
lution of spatial data increases, the costs associated 
with preparing the required maps increase. Howev-
er, small patches are subject to elimination due to 
a decrease in resolution (Weeks et al., 2005), which 
could also mean the loss of part of the informa-
tion. Some landscape metrics, such as the parame-
ter-to-area ratio, are sensitive to changes in the area 
under study (McGarigal, 2015; Weeks et al., 2005), 
while others, such as proximity index, which are cal-

culated based on cell/ pixel count in the raster maps 
(O’Neill et al., 1988), are not sensitive to changes 
in the study area (Cale & Hobbs, 1994; McGarigal, 
2015).

There are only a few studies, if any, in which the 
necessary attention is paid to taking an objective as-
sessment of ecological susceptibility further, where 
ecological susceptibility could be estimated using 
probabilistic models. This study seeks answers to 
two crucial questions: 1) Is there a significant rela-
tionship between the landscape structure and the 
objectively estimated ecological susceptibility? 2) Do 
probabilistic models bridge the landscape structure 
and the objectively estimated ecological susceptibil-
ity? Such key questions are justified by the fact that 
landscape metrics are spatially explicit metrics and 
easily measurable by publicly accessible land use/
land cover maps. They are also spatially able to indi-
cate three significant features of a given landscape, 
including composition, structure, and configuration. 
To fill the gap in current studies, this research was 
carried out to reveal the relationship between land-
scape structure metrics and ecological susceptibility, 
which are estimated using an objective method.

2 Materials and Methods

2.1. Study Area
The study area (36o33’ -38o27’ N Lon., 48o32’ -50o36’ 
E Lat.) is located in the southern basin of the Caspian 
Sea, with an area of 14,044 km2 (Figure 1). The eleva-
tion of the area varies between -74 and 3707 (msl). 
The dominant land covers are forest (53.2%), agri-
cultural land (23.2%), rangeland (48.55%), and oth-
ers (< 5%). Annual precipitation is 1100 mm, and the 
annual average temperature is 8.15 °C (Guilan Me-
teorological Organization, 2019). The primary dom-
inant rocks are travertine sediment rocks (17.5%), 
low-level piedmont fan and valley terrace deposits 
(12%), and basaltic volcanic rocks (42.5 %).

2.2. Methodology
Figure 2 shows the main stages of the study. The 
spatial data, as generated and published by different 
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administrative authorities, were transformed into 
a common digital format, then co-registered with 
the WGS84 source (zone 39n). The study area was 
divided into 183 cells with a resolution of 10 x 10 
km. They were considered study units to determine 
the measure of ecological susceptibility and also as 
an arbitrary landscape for which the values of the 
landscape structure-related metrics were calculated 
(Fig. 1).

2.2.1. Estimation of Ecological Susceptibility
Ecological maps, including slope, geographical as-
pect, elevation (USGS, 2019), vegetation (Landsat 
30 meter), depth of the groundwater table, soil (Soil 
and Water Research Institute, 1:250,000), climate 
(Iran Meteorological Organization, 1:50,000), and 
geology (Iran Geological Survey and Mineral Explo-
rations Organization, 1:250,000) were reclassified in 
order to present the extent to which each of the eco-

Figure 1. The cellular map of the study area and land use/land cover of the study area: (WB) water bodies, (WL) wetland, (DF1) 
closed deciduous broadleaf forest, (DF2) open deciduous broadleaf forest, (CF1) closed mixed forest, (CF2) closed forest with 
unknown type, (OF1) open mixed forest, (EF1) closed evergreen needle-leaf forest, (EF2) open evergreen needle-leaf forest, (S) 
Shrubland, (R1) high-density rangeland, (R2) intermediate density rangeland, (A) agriculture, (BU)Build-up.
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logical factors implies ecological susceptibility. Table 
1 shows detailed information on the source data. All 
pre-processing and analysis of satellite imagery and 
ecological maps were performed using TerrSet 2020 
Geospatial Monitoring and Modeling Software and 
ArcGIS Desktop 10.5 Software (Gandhi et al., 2015; 
Purevdorj et al., 1998; Song et al., 2017).

The ecological susceptibility was then estimated by 
(Eq. 1) where ESI is the ecological susceptibility in-
dex, Ki is the importance of the ith ecological factor, 
and Xi stands for the measure of ecological suscep-
tibility for the ith cell (Amiri, 2019). Details about the 
objective estimation of ecological susceptibility can 
be found in the supplementary section (S).

ESI = ∑i=1 (KiXi)         (1)n-1

Figure 2. The flow diagram of the methodology of the present study
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To determine the extent to which the developed 
models are liable to collinearity issues, variation in-
flation factors were calculated (Neter et al., 1996; 
Chatterjee et al., 2000; Daoud, 2017). The goodness 
of fit was evaluated by plotting the observed versus 
predicted measures of the models (Ahearn et al., 
2005). All statistical analyses and landscape metric 
calculations were performed applying IBM SPSS for 
Windows, Release 26, and FRAGSTATS (McGarigal & 
Marks, 1995; Jaeger, 2000; Vogt et al., 2007).

2.2.4. Inter-model comparison
The most appropriate models were then chosen 
by the Akaike information criterion. The Akaike in-
formation criterion was calculated applying Eq. 3 
(Burnham & Anderson, 2004; Amiri, 2020) where 
AICc is the value of Akaike information criterion, K is 
the number of variables in the model, including the 
constant variable, and n is the number of samples.

AICc=n(log RSS) + 2K + (2K(K+1)) (3)

2.3.5. Sensitivity and Uncertainty Analyses
The sensitivity analysis of the models could be con-
sidered an important step in improving models in 
general and environmental models in particular 
(Amiri, 2020), aiming to determine how sensitive the 
responses of a given model are to a change in the 
variables. To analyze the sensitivity of the models, 
conditional SA was applied. Accordingly, the output 
of the models was examined by changing the values 
of the variable of interest while adjusting the re-
maining variables to the mean. The models’ outputs 
were then depicted versus the incremental meas-
ures in the variable of interest.

2.2.2. Measurement of Landscape Metrics

The Land Use/Land Cover (LULC) map (Buchhorn et 
al., 2019) was applied to calculate the values of the 
five landscape metrics, which include the perime-
ter-area ratio, the related circumscribing circle, the 
fractal dimension index, the shape index, and the 
contiguity index. The explanation of each of these 
metrics is provided in Table S5 (McGarigal & Marks, 
1995; Rutledge, 2003; Leitão et al., 2012). The LULC 
map includes water bodies (WB), wetland (WL), 
closed deciduous broadleaf forest (DF1), open de-
ciduous broadleaf forest (DF2), closed mixed forest 
(CF1), closed forest with unknown type (CF2), open 
mixed forest (OF1), closed evergreen needle-leaf for-
est (EF1), open evergreen needle-leaf forest (EF2), 
shrubland (S), high-density rangeland (R1), interme-
diate-density rangeland (R2), agriculture (A), build-
up (BU).

2.2.3. Modeling
To model the relationship between landscape 
structure and ecological susceptibility, multiple re-
gression modeling approaches (linear, logarithmic, 
power, and exponential) were applied to determine 
which model structure can reveal more reliability for 
predicting ecological susceptibility by applying land-
scape metrics (input value p <0.05 and output value 
p ≥ 0.100).

Yi=β0 + β1x1 + β2x2 + … + βnxn + ε (2)

Where Yi is the measure of ecological susceptibili-
ty in the ith cell, X1………Xn are the measures of land-
scape metrics in the ith cell, β1… βn are coefficients of 
the model, and β0 is the constant coefficient.

Table 1. Detailed information on the source data

Data layer Format Scale/Resolution Year Source

Digital Elevation Model Raster 30 meters 2019 https://www.usgs.gov/
Landsat images Raster 30 meters 2019 https://landsat.gsfc.nasa.gov/
Groundwater table depth Vector 1:250,000 2019 http://www.swri.ir/
Soil Vector 1:250,000 2019 http://www.swri.ir/
Climate Vector 1:50,000 2019 http://www.irimo.ir/
Geology Vector 1:250,000 2019 https://gsi.ir/en
Land use / Land cover Raster 100 meters 2019 (Buchhorn et al., 2019)

n n-K-1
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Uncertainty analysis of models is an essential step 
in any modeling practice. It aims to describe the 
probability distribution of the model outputs to de-
termine the uncertainty of the predictions made by 
the model of interest. Monte Carlo simulation was 
used to analyze the uncertainty of the models. It was 
carried out by: 1) calculating the central tendency 
statistics, 2) determining the most fitted statistical 
distributions to dependent and independent varia-
bles, 3) generating random data applying the most 
fitted statistical distributions for the variables, which 
is 15,000 in this study, 4) simulating the model out-
puts using the generated data, and 5) probabilistic 
analysis of the behaviors of the models. The first 
step was performed by calculating the cumulative 
distribution function (CDF) and showing the CDF for 
the simulated values of the model of interest.

3 Results

3.1. Ecological Susceptibility
The ecological susceptibility was calculated using Eq. 
1 by reclassifying the spatial data. Ecological suscep-
tibility varies between 44 and 157, where the low-
er the measure, the more resistant the ecosystem 
(Table 2). The measures of ecological susceptibility 
were then reclassified to enhance them into four 
classes susceptible, semi-susceptible, semi-resist-
ant, and resistant (Table 2 and Figure 3). The re-
sults show that only about one-third of the study 
area (28%) is resistant, although most of the area 
(58.42%) is considered ecologically semi-susceptible 
and susceptible.

Figure 3. The ecological susceptibility indices of the study area. a: resistant, b: semi resistant, c: semi susceptible, and 
d: susceptible.



Landscape Online – supported by the International Association for Landscape Ecology and its community

Istanbuly et al.             Landscape Online 97 (2022) 1101 - Page 9

3.2. Landscape Metrics
The results indicated that the most irregular patch 
shape (shape index = 1.37) was observed in the 
closed deciduous broadleaf forest, while the open 
evergreen needle-leaf forest had the most regular 
shape (shape index = 0.08). From the point of view 
of the degree of connectivity, the closed deciduous 
broadleaf forest and the open evergreen needle-leaf 
forest showed the most connected patches (contigu-
ity index = 0.36) and the most disconnected patch-
es (contiguity index = 0.08) in the landscapes of the 
study area, respectively. Furthermore, the most ex-
tended patches (related circumscribing circle = 0.38) 
are related to the closed deciduous broadleaf forest, 
while the shortest patches (related circumscribing 
circle = 0.22) were observed for the open evergreen 
needle-leaf forest (Table 3).

3.3. Modeling
The four regression models (linear, logarithmic, ex-
ponential, and power) were examined using the 
mean, weighted average, and median values of 
landscape metrics as independent variables, and the 
values of ecological susceptibility, which were objec-
tively calculated as the dependent variable (Table 
S6). The models (Eqs. S2 to S16) were then classified 
into three groups, which indicate the mean values 
of the landscape metrics-based models, the weight-
ed average values of the landscape metrics-based 
models, and the median values of the landscape 
metrics-based models (Eqs. S2 to S16). The models 
developed are presented in the Supplementary Ma-
terials (S). 

3.4. Goodness-of-fit test
The goodness of fit of the models (Eqs. S2 to S16) 
was examined referring to the coefficient of determi-
nation, the significance of the model, its coefficients 
at p≤0.05 level, and the multicollinearity of the mod-
el variables. The results show that the coefficients 
of determination of the models based on the mean 
values of the landscape metrics vary from 0.436 to 
0.577, while they change (from 0.396 to 0.590 and 
0.264 to 0.641) for the models based on the weight-
ed average and median values of the landscape met-
rics models, respectively (Table S6) (Figure S3). 

3.5. Inter-model Comparisons
The inter-model comparisons indicated that the 
most appropriate model for the mean values of the 
shape index is Eq. S6, by which 54.65% of all varia-
tions in the values of ecological susceptibility can be 
explained. Eq. S11 was selected as the most appro-
priate model for the models based on the weighted 
average landscape metrics, whose coefficient of de-
termination is 0.58. Furthermore, a representative 
model was developed using the median values of 
the landscape metrics (Eq. S15). It can explain 58% 
of the variations in the values of ecological suscepti-
bility (Table S7).

3.6. Sensitivity Analysis
The three most appropriate models (Eqs. S6, S11 
and S15) were included in the conditional SA (Tables 
S8 and S9) (Figure S4). For the models based on the 
mean values of the landscape metrics (Eq. S6), the 
sensitivity of the model responses to independent 
variables decreases for the closed deciduous broad-
leaf forest DF1shp, the closed mixed forest CF1shp, the 
open mixed forest OF1shp, and the closed evergreen 
needle-leaf forest EF1shp. The sensitivity of the model 
(Eq. S15) increases due to an increase in the slope of 
the lines for the closed mixed forest CF1contig (7.46), 
the open deciduous broad-leaf forest DF2contig (11.6), 
the closed deciduous broad-leaf forest DF1contig 
(13.23), and the open mixed forest OF1contig (17.95). 
The sensitivity of the model (Eq. S11), which is the 
most appropriate model for the weighted average 
landscape metrics-based models, decreased, which 
was related to a change in the values of agriculture 
Ashp and the closed mixed forest CF1shp.

Table 2. The distribution statistics of ecological susceptibility 
in the study area.

Type Qualitative 
description

Quantitative 
ecological 
susceptibility

Area
(km2)

%

Ecological 
susceptibility 
classification

Resistant 44 – 72.25 3987.09 28.39
Semi resistant 72.25 – 100.5 1852.40 13.19
Semi susceptible 100.5 – 128.75 5939.21 42.29
Susceptible 128.75 – 157 2265.30 16.13

Distribution 
statistic

Minimum 44
Maximum 157
Mean 99.74
Std. dev 31.60
Kurtosis -1.37
Skewness -0.30
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3.7. Uncertainty Analysis
The cumulative density function was applied to ana-
lyze the behavior of the three representative models 
(Tables S8, S9, and S10). As a result, Figure S5 shows 
that for the models based on the mean values of the 
landscape metrics (Eq. S6) and those of the medi-
an values (Eq. S15), the output pr< 0 is zero. Mean-
while, the model is based on the weighted mean of 
the landscape metrics (Eq. S11) showed a very low 
probability, in which the output pr<0 is not zero.

4 Discussion

4.1. Landscape Metrics and Ecological 
Susceptibility

The results show that 6 of the 14 LULC classes were 
entered into the selected models based on the step-
wise approach, that is, the closed deciduous broad-
leaf forest, the open deciduous broad-leaf forest, 
the closed mixed forest, the closed evergreen nee-
dle-leaf forest, agriculture, and the open mixed for-
est. They were selected by the Akaike information 
criterion as the most appropriate. 

Equation S15 revealed direct associations between 
the ecological susceptibility values and the conti-
guity indices of the closed deciduous broadl-eaf 
forest (DF1contig) and the open mixed forest (OF1con-

tig). Meanwhile, the values are inversely associated 
with the contiguity indices of the open deciduous 
broad-leaf forest (DF2contig) and the closed mixed for-
est (CF1contig). They equal 0 for one-pixel patches and 
increase to a limit of 1 for a fully connected patch. 
Consequently, it implies that the higher the contigu-
ity indices of the closed deciduous broad-leaf forest 
(DF1contig) and open mixed forest patches (OF1contig), 
the higher the value of ecological susceptibility. 

Table S6 and Equations S6 and S11 showed a signif-
icant relationship between the value of ecological 
susceptibility and the shape index of the closed de-
ciduous broad-leaf forest (DF1shp), the closed mixed 
forest (CF1shp), the closed evergreen needle-leaf for-
est (EF1shp), the open mixed forest (OF1shp), and ag-
riculture (Ashp). Accordingly, an increase in the shape 
index of DF1shp, EF1shp, and OF1shp is directly related 

to the value of ecological susceptibility, while an in-
crease in the shape index of CF1shp is inversely asso-
ciated with a decrease in ecological susceptibility. 

The functioning of the shape index of agriculture 
patches (Ashp) regarding the value of ecological sus-
ceptibility changed depending on the model groups. 
More specifically, the shape index of agriculture 
patches showed an indirect relationship with the val-
ues of ecological susceptibility for the models based 
on weighted average landscape metrics. Meanwhile, 
unlike the function it played for the weighted average 
landscape metrics-based models, the shape index of 
agriculture patches (Ashp) revealed a direct associa-
tion with the ecological susceptibility values for the 
median landscape metrics-based model. The shape 
index varies between 1 and infinity, implying that the 
further away from 1 the index is, the more irregular 
the shape of the patch. Consequently, our findings 
suggest that in the median landscape metrics-based 
model, increasing irregularity in the shape of DF1shp, 
EF1shp, OF1shp, and Ashp is directly associated with an 
increase in the values of ecological susceptibility. For 
models based on the weighted average of landscape 
metrics, Ashp and CF1shp showed direct relationships 
with the values of ecological susceptibility.

Our study suggests that the susceptibility of eco-
system can be estimated using landscape metrics. 
The shape index and the contiguity index of differ-
ent forest classes can express the state of ecological 
susceptibility, so they are in line with the findings of 
Tejaswi (2007). It shows that the shape and conti-
guity indices of forest patches can indicate the state 
of the ecological system in general and forest eco-
system in particular, based on which forest can be 
managed. The relationship between shape and con-
tiguity indices with landscape susceptibility to deg-
radation was addressed by Halbac-Cotoara-Zamfir et 
al. (2022) and Mohammadi et al. (2021). They found 
that quantifying landscape metrics can help assess 
human impacts on ecosystems and then help with 
monitoring and restoration practices.

Our findings show that the susceptibility of the 
landscape decreases if the regularity of the forest 
patches, including the closed deciduous broad-leaf 
forest, the closed evergreen needle-leaf forest, and 
the open mixed forest, increases by approaching a 
square shape. Moreover, if the irregularity of the 
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closed mixed forest and that of agricultural patches 
increase, the ecological susceptibility of the land-
scape decreases in the study area. 

Moser et al. (2002) showed that the species richness 
of vascular plants and bryophytes is associated with 
changes in the mean shape index of the landscape. 
Consequently, increasing the metric is inversely as-
sociated with a decrease in the species diversity of 
vascular plants and bryophytes, bearing in mind that 
the greater the species diversity, the less ecological-
ly susceptible a given landscape is. The relationship 
between living and non-living factors and ecological 
resilience was addressed by Cushman and McGari-
gal (2019). The values of the shape index were mod-
eled as an indicator to determine the resilience of 
the system. They found that combining landscape 
shapes is an effective factor in its resilience against 
destructive factors. However, our findings indicated 
that the susceptibility of the ecosystem will increase 
by decreasing the shape index of forest patches 
(closed deciduous broad-leaf forest, closed ever-
green needle-leaf forest, and open mixed forest). 
Our findings are in line with those of Mirghaed et al. 
(2018). They showed that the landscape susceptibil-
ity to soil erosion is significantly associated with the 
shape regularity of the forest patches. They found 
that soil erosion is inversely related to the irregular 
shape of agriculture patches.

We found that landscape susceptibility decreases if 
the degree of connectivity between the closed de-
ciduous broad-leaf forest and the open mixed forest 
decreases and when it increases between the closed 
mixed forest and the open deciduous broad-leaf for-
est. It is in line with Huang et al. (2022) for closed 
mixed forests. They indicated that the discontinuity 
of forest patches and being close to a square shape 
can be considered the worst state for a forest land-
scape, implying the degradation of the landscape. 
Our study shows that the degree of discontinuity of 
closed mixed forests and open deciduous broad-leaf 
forests is associated with an increase in landscape 
susceptibility, as discontinuity of forest patches is 
a sign of landscape degradation (Kun et al., 2019; 
Huang et al., 2022). The landscape becomes weak-
er and more susceptible (Kun et al., 2019) when the 
degree of discontinuity of forest patches increases. 
The findings of this study confirm the direct rela-

tionship between the continuity of closed deciduous 
broadleaf forests and open mixed forests. This could 
change due to a change in other environmental con-
ditions (Moser et al., 2002).

McGarigal et al. (2009) and Wang et al. (2014) 
showed that the mean and weighted average val-
ues of the contiguity and the shape indices could 
indicate the state of a given surface landscape, im-
plying direct relationships between the shape index 
and the digital elevation model. However, there was 
an indirect relationship between the shape index 
and the normalized difference vegetation index. 
Our findings show that in addition to the mean and 
weighted average values, the median values of the 
contiguity index can be used as an indicator of the 
state of a landscape and thus show its susceptibility.

4.2. Implications
Subject-oriented approaches are considered diffi-
cult, time-consuming, and controversial methods. 
However, in the present study, the object-oriented 
method of estimating ecological susceptibility has 
been taken further so that it can be predicted by 
probabilistic models. Landscape structure metrics 
were applied to estimate ecological susceptibility us-
ing probabilistic models to provide a bridge between 
changes in landscape ecology and ecological suscep-
tibility. One of the main strengths of our approach is 
the availability of LULC maps as the required infor-
mation layer for calculating the landscape metrics. 
In regions where land-use planning has not been 
prepared or has not even begun to be implemented, 
determining the degree of ecological susceptibility 
for them, in the absence of land use planning docu-
ments, can be considered a roadmap that facilitates 
the site selection of projects. 

4.3. Limitations
Area-specific properties are a significant drawback 
of regression models, although the sensitivity and 
uncertainty analyses performed for the models de-
veloped in this study could indicate how they behave 
under varying conditions. Using landscape metrics, 
which are inherently dependent on scale, to devel-
op regression models can be considered a limitation 
when applying these models in other regions.
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5. Conclusions

In the present study, a fast and straightforward ap-
proach was developed to model the relationship be-
tween ecological susceptibility and landscape struc-
ture-related metrics, which mainly indicates the 
shape of landscape patches. The regression mod-
els constructed in the study show that the metrics 
of landscape structure could provide considerable 
reliability in measuring ecological susceptibility. Ex-
amining three statistics (the average, weighted av-
erage, and median) of landscape metrics in mode-
ling ecological susceptibility also suggests that mean 
and median landscape metric-based models could 
provide us with an estimation of ecological suscep-
tibility with less uncertainty compared to weighted 
average landscape metric-based models. The shape 
of closed deciduous broad-leaf forest patches and 
those of open mixed forest, closed mixed forest 
patches, and their degree of connectivity are very 
significant when estimating ecological susceptibility. 
Ecological susceptibility increases with an increase 
in the degree of connectivity of the closed decidu-
ous broad-leaf forest patches and open mixed forest 
patches, while an increase in the degree of connec-
tivity of the closed mixed forest patches and open 
deciduous broad-leaf forest patches is associated 
with decreased ecological susceptibility.

Based on our findings, the degree of shape irregular-
ity could play different roles in ecological suscepti-
bility. Increasing the shape irregularity of the closed 
deciduous broad-leaf forest and the open mixed for-
est increased the ecological susceptibility, while it 
decreased when the shape irregularity of the closed 
mixed forest increased. The findings of the present 
study also revealed that among the LULC classes, in 
three model groups, the closed deciduous broad-
leaf forest patches, the closed mixed forest, and the 
open mixed forest are the most significant explana-
tory variables. Therefore, these types of LULC might 
be considered more in land use planning, as they af-
fect the measures of ecological susceptibility. 
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