Treeline advance - driving processes and adverse factors

Authors

  • Friedrich Karl Holtmeier Institute of Landscape Ecology, University of Münster, Robert-Koch-Straße 26, D-48149 Münster, Germany
  • Gabriele E. Broll Division of Geo- and Agroecology, ISPA, University of Vechta, P.O. Box 1553, D-49364 Vechta, Germany

DOI:

https://doi.org/10.3097/LO.200701

Keywords:

Climate change, Regeneration, Treeline dynamics, Treeline history, Treeline pattern

Abstract

The general trend of climatically-driven treeline advance is modified by regional, local and temporal variations. Treelines will not advance in a closed front parallel to the shift of any isotherm to higher elevations and more northern latitudes. The effects of varying topography on site conditions and the after-effects of historical disturbances by natural and anthropogenic factors may override the effects of slightly higher average temperatures. Moreover, the varying treeline-forming species respond in different ways to a changing climate. Forest advance upwards and northwards primarily depends on successful regeneration and survival of young growth rather than on increasing growth rates of mature trees. Every assessment of treeline response to future climate change must consider the effects of local site conditions and feedbacks of increasing tree population in modulating the climatically-driven change. Treeline-shift will influence regional and local climates, pedogenesis, plant communities, animal populations and biodiversity as well as having a considerable effect on economic changes in primary production. A better understanding of the functional relationships between the many treeline-relevant factors and treeline dynamics can be achieved only by extensive research at different scales within different climatic regions supported by as many as possible experimental studies in the field together with laboratory and remote sensing techniques.

References

Almqvist, C., Bergsten, U., Bondesson, L., & Eriksson, U. (1998). Predicting germination capacity of pinus sylvestris and picea abies seeds using temperature data from weather stations. Canadian Journal of Forest Research, 28(10), 1530-1535. doi:10.1139/x98-139

Anschlag, K. (2006). Regeneration der fjellbirke (betula pubescens ssp. czerepanovii) und wurzelsysteme ihres jungwuchses im waldgrenzökoton, finnische subarktis. Dissertation Fachbereich Geowissenschaften, Mathematisch-Naturwissenschaftliche Fakultät, Universität Münster,

Arno, S. F. (1984). Timberline, mountain and arctic frontiers. The Mountaineers, Seattle,

Autio, J., & Colpaert, A. (2005). The impact of elevation, topography and snow load damage of trees on the position of the actual timberline on the fells in central finnish lapland. Fennia, 183(1), 15-36.

Bachelet, D., & Neilson, R. P. (2000). Biome redistribution under climate change. USDA Forest Service, General Technical Report TMRS-GTR, , 18-44.

Bader, M. Y. (2007). Tropical Alpine Treelines; how Ecological Processes Control Vegetation Patterning and Dynamics,

Bekker, M. F. (2005). Positive feedback between tree establishment and patterns of subalpine forest advancement, glacier national park, montana, U.S.A. Arctic, Antarctic, and Alpine Research, 37(1), 97-107. doi:10.1657/1523-0430(2005)037[0097:PFBTEA]2.0.CO;2

Benecke, U. (1972). Wachstum, CO2-gaswechsel und pigmentgehalt einiger baumarten nach ausbringung in verschiedene höhenlagen. Angewandte Botanik, 46, 117-135.

Betts, A. K., & Ball, J. H. (1997). Albedo over the boreal forest. Journal of Geophysical Research Atmospheres, 102(24), 28901-28909. doi:10.1029/96jd03876

Biondi, F. (2001). A 400-year tree-ring chronology from the tropical treeline of north america. Ambio, 30(3), 162-166. doi:10.1579/0044-7447-30.3.162

Blüthgen, J. (1942).

Bonan, G. B., Pollard, D., & Thompson, S. L. (1992). Effects of boreal forest vegetation on global climate. Nature, 359(6397), 716-718. doi:10.1038/359716a0

Brandes, R. (2006). Waldgrenzen griechischer hochgebirge unter besonderer berücksichtigung des taygetos, südpeloponnes (waldgrenzdynamik, tannensterben, dendroökologie). Dissertation, University of Erlangen,

Brodersen, C. R., Germino, M. J., & Smith, W. K. (2006). Photosynthesis during an episodic drought in abies lasiocarpa and picea engelmannii across an alpine treeline. Arctic, Antarctic, and Alpine Research, 38(1), 34-41. doi:10.1657/1523-0430(2006)038[0034:PDAEDI]2.0.CO;2

Broll, G. (1998). Diversity of soil organisms in alpine and arctic soils in europe. review and research needs. Pirineos, (151-152), 43-72. doi:10.3989/pirineos.1998.v151-152.118

Broll, G. (2000). Influence of overgrazing by reindeer on soil organic matter and soil microclimate of well-drained soils in the finnish subarctic. Adv.Soil Sci.Boca Raton, , 163-172.

Broll, G. (1994). Influence of the soil mosaic on biodiversity at heath sites in the european subarctic. Transactions 15th World Congress of Soil Science (Mexico), 4 A, 220-231.

Broll, G., & Holtmeier, F. -. (1994). Development of microtopographical structures in the forest-alpine tundra ecotone of the front range (colorado, USA) under the influence of tree islands, picea engelmannii and abies lasiocarpa. [Die Entwicklung von Kleinreliefstrukturen im Waldgrenzokoton der Front Range (Colorado, USA) unter dem Einfluss leewarts wandernder Ablegergruppen (Picea engelmannii und Abies lasiocarpa)] Erdkunde, 48(1), 48-59.

Broll, G., Holtmeier, F. -., Anschlag, K., Brauckmann, J., Wald, S., & Drees, B. (0000).

Brunstein, F. C., & Yamaguchi, D. K. (1992). The oldest known rocky mountain bristlecone pines (pinus aristata engelm.). Arctic & Alpine Research, 24(3), 253-256. doi:10.2307/1551666

Bruun, H. H., & Moen, J. (2003). Nested communities of alpine plants on isolated mountains: Relative importance of colonization and extinction. Journal of Biogeography, 30(2), 297-303. doi:10.1046/j.1365-2699.2003.00806.x

Bryson, R. A. (1966). Air masses, streamlines, and the boreal forest. Geographical Bulletin, 8(3), 228-269.

Bugmann, H., & Pfister, C. (2000). Impacts of interannual climate variability on past and future forest composition. Regional Environmental Change, 1(3-4), 112-125.

Burga, C. A., & Perret, R. (2001). Monitoring of eastern and southern swiss alpine timberline ecotones. Biomonitoring: General and Applied Aspects on Regional and Global Scales, , 179-194.

Burns, S. F. (1980). Alpine soil distribution and development, indian peaks, colorado front range. Alpine Soil Distribution and Development, Indian Peaks, Colorado Front Range,

Butler, D. R., Malanson, G. P., & Cairns, D. M. (1994). Stability of alpine treeline in glacier national park, montana, USA. Phytocoenologia, 22(4), 485-500.

Cairns, D. M. (1998). Modeling controls on pattern at alpine treeline. Geographical and Environmental Modelling, 2(1), 43-63.

Cairns, D. M., & Malanson, G. P. (1998). Environmental variables influencing the carbon balance at the alpine treeline: A modeling approach. Journal of Vegetation Science, 9(5), 679-692. doi:10.2307/3237286

Cairns, D. M., & Moen, J. (2004). Herbivory influences tree lines. Journal of Ecology, 92(6), 1019-1024. doi:10.1111/j.1365-2745.2004.00945.x

Callaghan, T. V., Crawford, R. M. M., Eronen, M., Hofgaard, A., Payette, S., Rees, W. G., . . . Werkman, B. R. (2002). The dynamics of the tundra-taiga boundary: An overview and suggested coordinated and integrated approach to research. Ambio, 31(SPEC. ISS. 12), 3-5.

Callaghan, T. V., Werkman, B. R., & Crawford, R. M. M. (2002). The tundra-taiga interface and its dynamics: Concepts and applications. Ambio, 31(SPEC. ISS. 12), 8-14.

Camarero, J. J., & Gutiérrez, E. (2000). Recent spatiotemporal variability of pinus uncinata regeneration in altitudinal treeline ecotones (spanish central pyrenees). Int.Conf.Dendrochron.for the Third Millenium,

Chapin III, F. S., Eugster, W., McFadden, J. P., Lynch, A. H., & Walker, D. A. (2000). Summer differences among arctic ecosystems in regional climate forcing. Journal of Climate, 13(12), 2002-2010. doi:10.1175/1520-0442(2000)013<2002:SDAAEI>2.0.CO;2

Cramer, W. (1997). Modeling the possible impact of climate change on broad-scale vegetation structure: Example from northern europe. in: W. C. oechel, T. callaghan, T. gilmanov, J. I. holten, B. marwell, U. molau, & B. sveinbjörsson (eds.): Global change and arctic terrestrial ecosystems, springer. New York, , 312-329.

Crawford, R. M. M. (1978). Ecological hazards of oceanic environments. New Phytologist, 128, 257-281.

Crawford, R. M. M. (2005). Peripheral plant population survival in polar regions. Mountain ecosystems: Studies in treeline ecology (pp. 43-76) doi:10.1007/3-540-27365-4_2

Crawford, R. M. M., Jeffree, C. E., & Rees, W. G. (2003). Paludification and forest retreat in northern oceanic environments. Annals of Botany, 91(SPEC. ISS. JAN.), 213-226. doi:10.1093/aob/mcf185

Cuevas, J. G. (2002). Episodic regeneration at the nothofagus pumilio alpine timberline in tierra del fuego, chile. Journal of Ecology, 90(1), 52-60. doi:10.1046/j.0022-0477.2001.00636.x

Cuevas, J. G. (2000). Tree recruitment at the nothofagus pumilio alpine timberline in tierra del fuego, chile. Journal of Ecology, 88(5), 840-855. doi:10.1046/j.1365-2745.2000.00497.x

Cui, M., & Smith, W. K. (1991). Photosynthesis, water relations and mortality in abies lasiocarpa seedlings during natural establishment. Tree Physiology, 8(1), 37-46. doi:10.1093/treephys/8.1.37

Cullen, L. E., Stewart, G. H., Duncan, R. P., & Palmer, J. G. (2001). Disturbance and climate warming infiuences on new zealand nothofagus tree-line population dynamics. Journal of Ecology, 89(6), 1061-1071. doi:10.1046/j.0022-0477 .2001.00628.x

Dahl, E. (1986). Zonation in arctic and alpine tundra and fellfield ecobiomes. Ecosystem Theory and Application, , 35-62.

Dahms, A. (1992). Wachstumsbedingungen bei picea engelmanni (parry) engelm. und abies lasiocarpa (hook) nutt. an unterschiedlich windexponierten standorten im waldgrenzbereich der colorado front range (U.S.A.). Dissertation, Mathematisch-Naturwissenschaftliche Fakultät, Westfälische Wilhelms-Universität, Münster,

Dalen, L., & Hofgaard, A. (2005). Differential regional treeline dynamics in the scandes mountains. Arctic, Antarctic, and Alpine Research, 37(3), 284-296. doi:10.1657/1523-0430(2005)037[0284:DRTDIT]2.0.CO;2

Daly, C. (1984). Snow distribution patterns in the alpine krummholz zone. Progress in Physical Geography, 8(2), 157-175. doi:10.1177/030913338400800201

Daniels, L. D. (2000). The Dynamics of Altitudinal Treelines in Northern Patagonia: Spatio-Temporal Influences of Climate,

Davis, M. B. (1986). Climatic instability, time lags, and community disequilibrium. Community Ecology, , 269-284.

Dullinger, S., Dirnböck, T., & Grabherr, G. (2004). Modelling climate change-driven treeline shifts: Relative effects of temperature increase, dispersal and invasibility. Journal of Ecology, 92(2), 241-252. doi:10.1111/j.0022-0477.2004.00872.x

Dullinger, S., Dirnböck, T., & Grabherr, G. (2003). Patterns of shrub invasion into high mountain grasslands of the northern calcareous alps, austria. Arctic, Antarctic, and Alpine Research, 35(4), 434-441. doi:10.1657/1523-0430(2003)035[0434:POSIIH]2.0.CO;2

Ellenberg, H. (1975). Vegetationsstufen in perhumiden bis perariden bereichen der tropischen anden. Phytocoenologia, 2(2), 368-387.

Elliott, D. (1979). The current regenerative aspect of the northern canadian trees, keewatin, N.W.T., canada: Some preliminary observations. Arctic and Alpine Research 11, 243-251.Elliott-Fisk, D.1983.the Stability of the Northern Cascade Tree-Limit.Annals of American Geographers, 73, 560-576.

Elliott, D. L., & Short, S. K. (1979). The northern limit of trees in labrador: A discussion. Arctic, 32(3), 201-206.

Foley, J. A., Kutzbach, J. E., Coe, M. T., & Levis, S. (1994). Feedbacks between climate and boreal forests during the holocene epoch. Nature, 371(6492), 52-54. doi:10.1038/371052a0

Gamache, I., & Payette, S. (2004). Height growth response of tree line black spruce to recent climate warming across the forest-tundra of eastern canada. Journal of Ecology, 92(5), 835-845. doi:10.1111/j.0022-0477.2004.00913.x

Gamache, I., & Payette, S. (2005). Latitudinal response of subarctic tree lines to recent climate change in eastern canada. Journal of Biogeography, 32(5), 849-862. doi:10.1111/j.1365-2699.2004.01182.x

Geddes, C. A., Brown, D. G., & Fagre, D. B. (2005). Topography and vegetation as predictors of snow water equivalent across the alpine treeline ecotone at lee ridge, glacier national park, montana, U.S.A. Arctic, Antarctic, and Alpine Research, 37(2), 197-205. doi:10.1657/1523-0430(2005)037[0197:TAVAPO]2.0.CO;2

Germino, M. J., & Smith, W. K. (2000). Differences in microsite, plant form, and low-temperature photoinhibition in alpine plants. Arctic, Antarctic, and Alpine Research, 32(4), 388-396. doi:10.2307/1552387

Germino, M. J., & Smith, W. K. (1999). Sky exposure, crown architecture, and low-temperature photoinhibition in conifer seedlings at alpine treeline. Plant, Cell and Environment, 22(4), 407-415. doi:10.1046/j.1365-3040.1999.00426.x

Germino, M. J., Smith, W. K., & Resor, A. C. (2002). Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecology, 162(2), 157-168. doi:10.1023/A:1020385320738

Giorgi, F., Hewitson, B., Christensen, J., Hulme, M., Von Storch, H., Whetton, P., . . . Fu, C. (2001). Regional climate information - evaluation and projections. Climate Change 2001: The Scientific Basis, , 583-638.

Grace, J. (1988). The functional significance of short stature in montane vegetation. Plant Form and Vegetation Structure, , 201-209.

Grace, J. (1989). Tree lines. Philosophical Transactions - Royal Society of London, B, 324(1223), 233-245.

Grace, J., Berninger, F., & Nagy, L. (2002). Impacts of climate change on the tree line. Annals of Botany, 90(4), 537-544. doi:10.1093/aob/mcf222

Graumlich, L. J. (1991). Subalpine tree growth, climate, and increasing CO2: An assessment of recent growth trends. Ecology, 72(1), 1-11. doi:10.2307/1938895

Graumlich, L. J., & Brubaker, L. B. (1986). Reconstruction of annual temperature (1590-1979) for longmire, washington, derived from tree rings. Quaternary Research, 25(2), 223-234. doi:10.1016/0033-5894(86)90059-1

Graumlich, L. J., Brubaker, L. B., & Grier, C. C. (1989). Long-term trends in forest net primary productivity: Cascade mountains, washington. Ecology, 70(2), 405-410. doi:10.2307/1937545

Groß, M., Rainer, I., & Tranquillini, W. (1991). Influence of the number of freezing cycles and cooling and thawing rates on frost resistance of spruce. [Über die Frostresistenz der Fichte mit besonderer Berücksichtigung der Zahl der Gefrierzyklen und der Geschwindigkeit der Temperaturänderung beim Frieren und Auftauen] Forstwissenschaftliches Centralblatt, 110(1), 207-217. doi:10.1007/BF02741255

Haag, R. W., & Bliss, L. C. (1974). Functional effects of vegetation on the radiant energy budget of boreal forest. Can.Geotech.J., 11, 374-379.

Hagemoen, R. I. M., & Reimers, E. (2002). Reindeer summer activity pattern in relation to weather and insect harassment. Journal of Animal Ecology, 71(5), 883-892. doi:10.1046/j.1365-2656.2002.00654.x

Halloy, S. (1989). Altitudinal limits of life in subtropical mountains: What do we know? Pacific Science, 43(2), 170-184.

Hansen-Bristow, K. J. (1981). Environmental controls influencing the altitude and form of the forest-alpine tundra ecotone, colorado front range. PhD Thesis, University of Colorado, Boulder,

Harding, R., Kuhry, P., Christensen, T. R., Sykes, M. T., Dankers, R., & Van der Linden, S. (2002). Climate feedbacks at the tundra-taiga interface. Ambio, 31(SPEC. ISS. 12), 47-55.

Hare, F. K. (1971). Snow-cover problems near the arctic treeline of north america. Report Kevo Subarctic Research Station, 8, 31-40.

Harris, C. (2005). Climate change, mountain permafrost degradation and geotechnical hazard. Global Change and Mountain Regions, , 215-224.

Hättenschwiler, S., Handa, I. T., Egli, L., Asshoff, R., Ammann, W., & Körner, C. (2002). Atmospheric CO2 enrichment of alpine treeline conifers. New Phytologist, 156(3), 363-375. doi:10.1046/j.1469-8137.2002.00537.x

Hennig, I. (1974). Geoökologie Der Hawaii-Inseln,

Henttonen, H., Kanninen, M., Nygren, M., & Ojansuu, R. (1986). The maturation of pinus sylvestris seeds in relation to temperature climate in northern finland. Scandinavian Journal of Forest Research, 1(1-4), 243-249. doi:10.1080/02827588609382415

Hiemstra, C. A., Liston, G. E., & Reiners, W. A. (2002). Snow redistribution by wind and interactions with vegetation at upper treeline in the medicine bow mountains, wyoming, U.S.A. Arctic, Antarctic, and Alpine Research, 34(3), 262-273. doi:10.2307/1552483

Hiltunen, R. (1980). Temperature and snow conditions in snow beds and wind-exposed places on pikku malla, NW finnish lapland. Luonnon Tutkija, 84, 11-14.

LO.200701

Downloads

Published

29.06.2007

How to Cite

Holtmeier, F. K., & Broll, G. E. (2007). Treeline advance - driving processes and adverse factors. Landscape Online, 1. https://doi.org/10.3097/LO.200701

Issue

Section

Research Article