Nature Conservation Against All? Aquatic Macrophyte De-Weeding – Cut or Conserve? A Stakeholder Analysis
DOI:
https://doi.org/10.3097/LO.201754Keywords:
aquatic biomass, stakeholder analysis, communication, economic use versus conservation, management, nuisance, society, nature, economyAbstract
De-weeding of streams and lakes occurs in Germany on a widespread level, mostly to ensure water runoff and to provide flood protection. But de-weeding also affects a range of stakeholders, who have their own reasons to support or oppose it. For the list of stakeholders identified, see chapter 4. As part of a project analysing the feasibility of using water plant biomass as a substrate for biogas production, we conducted a multi-method stakeholder analysis to evaluate stakeholders’ opinions about de-weeding. The results show a preference of all stakeholders, except those identifying with nature conservation, for aquatic de-weeding. Our findings also point to a lack of communication between stakeholders, resulting in biased opinions of the stakeholders against other stakeholders and starting points for conflict.
References
Abdelmalik, W. E. Y., El-Shinawy, R. M. K., Ishak, M. M., & Mahmoud, K. A. (1973). Uptake of radionuclides by some aquatic macrophytes of ismailia canal, egypt. Hydrobiologia, 42(1), 3-12. doi:10.1007/BF00014141
Abernethy, V. J., Sabbatini, M. R., & Murphy, K. J. (1996). Response of elodea canadensis michx. and myriophyllum spicatum L. to shade, cutting and competition in experimental culture. Hydrobiologia, 340(1-3), 219-224. doi:10.1007/BF00012758
Alvarez, R., & Lidén, G. (2008). Anaerobic co-digestion of aquatic flora and quinoa with manures from bolivian altiplano. Waste Management, 28(10), 1933-1940. doi:10.1016/j.wasman.2007.11.002
Baattrup-Pedersen, A., Larsen, S. E., & Riis, T. (2002). Long-term effects of stream management on plant communities in two danish lowland streams. Hydrobiologia, 481, 33-45. doi:10.1023/A:1021296519187
Barrat-Segretain, M. -. (2005). Competition between invasive and indigenous species: Impact of spatial pattern and developmental stage. Plant Ecology, 180(2), 153-160. doi:10.1007/s11258-004-7374-7
Barrat-Segretain, M. -., & Bornette, G. (2000). Regeneration and colonization abilities of aquatic plant fragments: Effect of disturbance seasonality. Hydrobiologia, 421(1), 31-39. doi:10.1023/A:1003980927853
Barrat-Segretain, M. -., & Lemoine, D. G. (2007). Can snail herbivory influence the outcome of competition between elodea species? Aquatic Botany, 86(2), 157-162. doi:10.1016/j.aquabot.2006.09.016
Bode, H. (2014). Ruhrgütebericht 2014,
Bolsunovsky, A., & Bondareva, L. (2008). Accumulation and release of 99Tc by a macrophyte of the yenisei river (elodea canadensis) in laboratory experiments. Journal of Radioanalytical and Nuclear Chemistry, 277(3), 631-636. doi:10.1007/s10967-007-7148-5
Caffrey, J. M., Millane, M., Evers, S., Moran, H., & Butler, M. (2010). A novel approach to aquatic weed control and habitat restoration using biodegradable jute matting. Aquatic Invasions, 5(2), 123-129. doi:10.3391/ai.2010.5.2.01
Cecal, A., Popa, K., Potoroaca, V., & Melniciuc-Puica, N. (2002). Decontamination of radioactive liquid wastes by hydrophytic vegetal organisms. Journal of Radioanalytical and Nuclear Chemistry, 251(2), 257-261. doi:10.1023/A:1014864226648
Chaudhuri, H., & Ram, K. J. (1975). Control of aquatic weed by moth larvae. Nature, 253(5486), 40-41. doi:10.1038/253040a0
Cross, D. G. (1969). Aquatic weed control using grass carp. Journal of Fish Biology, 1(1), 27-30. doi:10.1111/j.1095-8649.1969.tb03842.x
Crum, S. J. H., Van Kammen-Polman, A. M. M., & Leistra, M. (1999). Sorption of nine pesticides to three aquatic macrophytes. Archives of Environmental Contamination and Toxicology, 37(3), 310-316. doi:10.1007/s002449900519
Eicher, G. (1947). Aniline dye in aquatic weed control. The Journal of Wildlife Management, 11, 193-197.
Fitzsimons, R. E., Laurino, C. N., & Vallejos, R. H. (1982). Estimation of potential biomass resource and biogas production from aquatic plants in argentina. Energy, 7(8), 681-687. doi:10.1016/0360-5442(82)90004-4
Gutiérrez, E., Arreguín, F., Huerto, R., & Saldaña, P. (1994). Aquatic weed control. International Journal of Water Resources Development, 10(3), 291-312. doi:10.1080/07900629408722631
Hessen, D. O., Skurdal, J., & Braathen, J. E. (2004). Plant exclusion of a herbivore; crayfish population decline caused by an invading waterweed. Biological Invasions, 6(2), 133-140. doi:10.1023/B:BINV.0000022131.40783.f0
Howard-Williams, C., Schwarz, A. -., & Reid, V. (1996). Patterns of aquatic weed regrowth following mechanical harvesting in new zealand hydro-lakes. Hydrobiologia, 340(1-3), 229-234. doi:10.1007/BF00012760
Jasser, I. (1995). The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia, 306(1), 21-32. doi:10.1007/BF00007855
Jeppesen, E., Søndergaard, M., Søndergaard, M., & Christoffersen, K. (1998). The Structuring Role of Submerged Macrophytes in Lakes,
Jorga, W., Weise, G., & Linke, H. (1979). Biomasseentwicklung submerser makrophyten und möglichkeiten ihrer landwirtschaftlichen verwertung als viehfutter. biomasseproduktion und gewässerökologische auswirkungen. Acta Hydrochimica Et Hydrobiologica, 7(3), 357-362. doi:10.1002/aheh.19790070311
Kuckartz, U. (2012). Qualitative Inhaltsanalyse.Methoden, Praxis, Computerunterstützung,
Kuroda, K., Akiyama, Y., Keno, Y., Nakatani, N., & Otsuka, K. (2014). Anaerobic digestion of marine biomass for practical operation. Journal of Marine Science and Technology (Japan), 19(3), 280-291. doi:10.1007/s00773-013-0247-9
Kuroda, K., Keno, Y., & Otsuka, K. (2013). An Integrated Feasibility Study of an Anaerobic Digestion Plant using Marine Biomass and Food Waste,
Lake, M. D., Hicks, B. J., Wells, R. D. S., & Dugdale, T. M. (2002). Consumption of submerged aquatic macrophytes by rudd (scardinius erythrophthalmus L.) in new zealand. Hydrobiologia, 470, 13-22. doi:10.1023/A:1015689432289
Lombardo, P. (2005). Applicability of littoral food-web biomanipulation for lake management purposes: Snails, macrophytes, and water transparency in northeast ohio shallow lakes. Lake and Reservoir Management, 21(2), 186-202. doi:10.1080/07438140509354428
Mathew, A. K., Bhui, I., Banerjee, S. N., Goswami, R., Chakraborty, A. K., Shome, A., . . . Chaudhury, S. (2015). Biogas production from locally available aquatic weeds of santiniketan through anaerobic digestion. Clean Technologies and Environmental Policy, 17(6), 1681-1688. doi:10.1007/s10098-014-0877-6
Mayring, P. (2015). Qualitative content analysis: Theoretical background and procedures. Approaches to Qualitative Research in Mathematics Education, , 365-380.
Meyer, L., & Hinrichs, D. (2000). Microhabitat preferences and movements of the weatherfish, misgurnus fossilis, in a drainage channel. Environmental Biology of Fishes, 58(3), 297-306. doi:10.1023/A:1007681313916
Meyer, L., & Hinrichs, D. (2000). Microhabitat preferences and movements of the weatherfish, misgurnus fossilis, in a drainage channel. Environmental Biology of Fishes, 58(3), 297-306. doi:10.1023/A:1007681313916
Mieczan, T. (2007). Size spectra and abundance of planktonic ciliates within various habitats in a macrophyte-dominated lake (eastern poland). Biologia, 62(2), 189-194. doi:10.2478/s11756-007-0028-1
Mielecki, M., & Pieczyńska, E. (2005). The influence of fragmentation on the growth of elodea canadensis michx. in different light conditions. Polish Journal of Ecology, 53(2), 155-164.
Nakai, S., Hosomi, M., Okada, M., & Murakami, A. (1996). Control of algal growth by macrophytes and macrophyte-extracted bioactive compounds doi:10.1016/S0273-1223(96)00749-4
Nakai, S., Inoue, Y., Hosomi, M., & Murakami, A. (1999). Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Science and Technology, 39(8), 47-53. doi:10.1016/S0273-1223(99)00185-7
Perrow, M. R., Hans Schutten, J., Howes, J. R., Holzer, T., Jane Madgwick, F., & Jowitt, A. J. D. (1997). Interactions between coot (fulica atra) and submerged macrophytes: The role of birds in the restoration process. Hydrobiologia, 342-343, 241-255. doi:10.1007/978-94-011-5648-6_26
Pieczyńska, E., & Tarmanowska, A. (1996). Effect of decomposing filamentous algae on the growth of elodea canadensis michx. (a laboratory experiment). Aquatic Botany, 54(4), 313-319. doi:10.1016/0304-3770(96)01034-0
Prejs, A. (1984). Herbivory by temperate freshwater fishes and its consequences. Environmental Biology of Fishes, 10(4), 281-296. doi:10.1007/BF00001481
Raynes, J. J. (1964). Aquatic plant control. Hyacinth Control J., 3, 2-4.
Simberloff, D., & Gibbons, L. (2004). Now you see them, now you don't! - population crashes of established introduced species. Biological Invasions, 6(2), 161-172. doi:10.1023/B:BINV.0000022133.49752.46
Søndergaard, M., Jeppesen, E., Mortensen, E., Dall, E., Kristensen, P., & Sortkjær, O. (1990). Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: A combined effect of reduced internal P-loading and increased zooplankton grazing. Hydrobiologia, 200-201(1), 229-240. doi:10.1007/BF02530342
Sudhakar, K., Ananthakrishnan, R., & Goyal, A. (2013). Biogas production from a mixture of water hyacinth, water chestnut and cow dung. International Journal of Science, Engineering and Technology Research, 2(1), 35-37.
Thiébaut, G. (2008). Phosphorus and aquatic plants. Plant.Ecophysiol, 7, 31-49.
Willby, N. J. (2007). Managing invasive aquatic plants: Problems and prospects. Aquatic Conservation: Marine and Freshwater Ecosystems, 17(7), 659-665. doi:10.1002/aqc.913
Witzel, A. (2000). The problem-centered interview. The Problem-Centered Interview,
Zehnsdorf, A., Hussner, A., Eismann, F., Rönicke, H., & Melzer, A. (2015). Management options of invasive elodea nuttallii and elodea canadensis. Limnologica, 51, 110-117. doi:10.1016/j.limno.2014.12.010
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Vasco Brummer, Sandra Roth, Markus Röhl, Carsten Herbes
This work is licensed under a Creative Commons Attribution 4.0 International License.