Recent glacier recession - A new source of postglacial treeline and climate history in the Swedish Scandes
DOI:
https://doi.org/10.3097/LO.201126Keywords:
Climate change, Glacier forefields, Holocene, Megafossil trees, Mountain birch, Paleoclimate, Pine, Vegetation historyAbstract
Climate warming during the past century has imposed recession of glaciers and perennial snow/ice patches along the entire Swedish Scandes. On the newly exposed forefields, subfossil wood remnants are being outwashed from beneath ice and snow bodies. In Scandinavia, this kind of detrital wood is a previously unused source of postglacial vegetation and climate history. The present study reports radiocarbon dates of a set of 78 wood samples, retrieved from three main sites, high above modern treelines and stretching along the Swedish Scandes. In accord with previous studies, pine (Pinus sylvestris) colonized early emerging nunataks already during the Late Glacial. Around 9600-9500 cal. yr BP a first massive wave of tree establishment, birch and pine, took place in "empty" glacier cirques. Both species grew 400-600 m above their present-ay treeline position and the summer temperatures may have been 3.5 oC warmer than present. In respons to Neoglacial cooling, treelines of both birch and pine descended until their final disappearance from the record 4400 and 5900 cal. yr BP, respectively. During the entire interval 9600 to 4400 cal. yr BP, birch prospered in a 100-150 broad belt above the uppermost pines. The recent emergence of tree remnants in the current habitats relates to the contemporary episode of climate warming, possibly unprecedented for several past millennia. It is inferred, by an anology with the past, that in a future scenario with summers 3.5 °warmer than present, the birch treeline may rise by 600 m or so.
References
Aas, B., & Faarlund, T. (2000). Forest limits and the subalpine birch belt in north europe with a focus on norway. AmS-Varia, 37, 103-147.
Aas, B., & Faarlund, T. (1988). Postglasiale skoggrenser i sentrale sørnorske fjelltrakter. 14C-datering av subfossile furu- og bjørkerester. (postglacial forest limits in central south norwegian mountains. radiocarbon datings of subfossil pine and birch specimens). Norsk Geografisk Tidsskrift, 42(1), 25-61. doi:10.1080/00291958808552183
ACIA. (2005). Arctic Climate Impact Assessment,
Ahlmann, H. (1938).
Ahlmann, H. W. (1953). Glacier variations and climatic fluctuations. Glacier Variations and Climatic Fluctuations,
Ahlmann, H. W., & Lindblad, T. (1940). Die grössenveränderungen des karsajökels in schwedisch-lappland während der jahre 1909-1939. Geogr.Ann., 22(1-2), 80-94.
Ahlmann, H. W., & Tryselius, O. (1929). Der kårsa-gletscher in schwedish-lappland. Geografiska Annaler, 11(1), 1-32.
Akasofu, S. (2010). On the recovery from the little ice age. Natural Science, 2(11), 1211-1224.
Anderson, P. M., Barnosky, C. W., Bartlein, P. J., Behling, P. J., Brubaker, L., Cushing, E. J., . . . Wright Jr., H. E. (1988). Climatic changes of the last 18,000 years: Observations and model simulations. Science, 241(4869), 1043-1052. doi:10.1126/science.241.4869.1043
Bakke, J., Dahl, S. O., Paasche, Ø., Løvlie, R., & Nesje, A. (2005). Glacier fluctuations, equilibrium-line altitudes and palaeoclimate in lyngen, northern norway, during the lateglacial and holocene. Holocene, 15(4), 518-540. doi:10.1191/0959683605hl815rp
Bakke, J., Lie, Ø., Dahl, S. O., Nesje, A., & Bjune, A. E. (2008). Strength and spatial patterns of the holocene wintertime westerlies in the NE atlantic region. Global and Planetary Change, 60(1-2), 28-41. doi:10.1016/j.gloplacha.2006.07.030
Barnekow, L. (1999). Holocene tree-line dynamics and inferred climatic changes in the abisko area, northern sweden, based on macrofossil and pollen records. Holocene, 9(3), 253-265. doi:10.1191/095968399676322637
Barnett, C., Dumayne-Peaty, L., & Matthews, J. A. (2001). Holocene climatic change and tree-line response in leirdalen, central jotunheimen, south central norway. Review of Palaeobotany and Palynology, 117(1-3), 119-137. doi:10.1016/S0034-6667(01)00081-1
Baroni, C., & Orombelli, G. (1996). The alpine "iceman" and holocene climatic change. Quaternary Research, 46(1), 78-83. doi:10.1006/qres.1996.0046
Barry, R. G. (2006). The status of research on glaciers and global glacier recession: A review. Progress in Physical Geography, 30(3), 285-306. doi:10.1191/0309133306pp478ra
Beierle, B. D., Smith, D. G., & Hills, L. V. (2003). Late quaternary glacial and environmental history of the burstall pass area, kananaskis country, alberta, canada. Arctic, Antarctic, and Alpine Research, 35(3), 391-398. doi:10.1657/1523-0430(2003)035[0391:LQGAEH]2.0.CO;2
Benedict, J. B., Benedict, R. J., Lee, C. M., & Staley, D. M. (2008). Spruce trees from a melting ice patch: Evidence for holocene climatic change in the colorado rocky mountains, USA. Holocene, 18(7), 1067-1076. doi:10.1177/0959683608095578
Berger, A., & Loutre, M. F. (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10(4), 297-317. doi:10.1016/0277-3791(91)90033-Q
Berglund, B. E., Barnekow, L., Hammarlund, D., Sandgren, P., & Snowball, I. F. (1996). Holocene forest dynamics and climate changes in the abisko area, northern sweden - the sonesson model of vegetation history reconsidered and confirmed. Plant Ecology in the Subarctic Swedish Lapland, , 15-30.
Bergman, J., Hammarlund, D., Hannon, G., Barnekow, L., & Wohlfarth, B. (2005). Deglacial vegetation succession and holocene tree-limit dynamics in the scandes mountains, west-central sweden: Stratigraphic data compared to megafossil evidence. Review of Palaeobotany and Palynology, 134(3-4), 129-151. doi:10.1016/j.revpalbo.2004.12.005
Bernes, C. (2007). En Ännu Varmare Värld,
Betts, R. A., Cox, P. M., & Woodward, F. I. (2000). Simulated responses of potential vegetation to doubled-CO2 climate change and feedbacks on near-surface temperature. Global Ecology and Biogeography, 9(2), 171-180. doi:10.1046/j.1365-2699.2000.00160.x
Bigler, C., Barnekow, L., Heinrichs, M. L., & Hall, R. I. (2006). Holocene environmental history of lake vuolep njakajaure (abisko national park, northern sweden) reconstructed using biological proxy indicators. Vegetation History and Archaeobotany, 15(4), 309-320. doi:10.1007/s00334-006-0054-x
Bigler, C., Grahn, E., Larocque, I., Jeziorski, A., & Hall, R. (2003). Holocene environmental change at lake njulla (999 m a.s.l.), northern sweden: A comparison with four small nearby lakes along an altitudinal gradient. Journal of Paleolimnology, 29(1), 13-29. doi:10.1023/A:1022850925937
Bigler, C., Larocque, I., Peglar, S. M., Birks, H. J. B., & Hall, R. I. (2002). Quantitative multiproxy assessment of long-term patterns of holocene environmental change from a small lake near abisko, northern sweden. Holocene, 12(4), 481-496. doi:10.1191/0959683602hl559rp
Birks, H. H., Larsen, E., & Birks, H. J. B. (2006). On the presence of late-glacial trees in western norway and the scandes: A further comment [1]. Journal of Biogeography, 33(2), 376-377. doi:10.1111/j.1365-2699.2005.01437.x
Bjune, A. E., Bakke, J., Nesje, A., & Birks, H. J. B. (2005). Holocene mean july temperature and winter precipitation in western norway inferred from palynological and glaciological lake-sediment proxies. Holocene, 15(2), 177-189. doi:10.1191/0959683605hl798rp
Briner, J. P., Stewart, H. A. M., Young, N. E., Philipps, W., & Losee, S. (2010). Using proglacial-threshold lakes to constrain fluctuations of the jakobshavn isbræ ice margin, western greenland, during the holocene. Quaternary Science Reviews, 29(27-28), 3861-3874. doi:10.1016/j.quascirev.2010.09.005
Broecker, W. S. (2001). Glaciers that speak in tongues and other tales of global warming. Natural History, 110, 60-69.
Bryn, A. (2008). Recent forest limit changes in south-east norway: Effects of climate change or regrowth after abandoned utilisation? Norsk Geografisk Tidsskrift, 62(4), 251-270. doi:10.1080/00291950802517551
Buffen, A. M., Thompson, L. G., Mosley-Thompson, E., & Huh, K. I. (2009). Recently exposed vegetation reveals holocene changes in the extent of the quelccaya ice cap, peru. Quaternary Research, 72(2), 157-163. doi:10.1016/j.yqres.2009.02.007
Callaghan, T. V., Bergholm, F., Christensen, T. R., Jonasson, C., Kokfelt, U., & Johansson, M. (2010). A new climate era in the sub-arctic: Accelerating climate changes and multiple impacts. Geophysical Research Letters, 37(14) doi:10.1029/2009GL042064
CASELDINE, C. J., & MATTHEWS, J. A. (1987). Podzol development, vegetation change and glacier variations at haugabreen, southern norway. Boreas, 16(3), 215-230. doi:10.1111/j.1502-3885.1987.tb00089.x
Dahl, S. O., & Nesje, A. (1996). A new approach to calculating holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: A case study from hardangerjøkulen, central southern norway. Holocene, 6(4), 381-398. doi:10.1177/095968369600600401
Dalen, L., & Hofgaard, A. (2005). Differential regional treeline dynamics in the scandes mountains. Arctic, Antarctic, and Alpine Research, 37(3), 284-296. doi:10.1657/1523-0430(2005)037[0284:DRTDIT]2.0.CO;2
D'Arrigo, R., Wilson, R., & Jacoby, G. (2006). On the long-term context for late twentieth century warming. Journal of Geophysical Research Atmospheres, 111(3) doi:10.1029/2005JD006352
Davis, M. B. (1989). Insights from paleoecology on global change. Bulletin of the Ecological Society of America, 70, 222-228.
Dixon, E. J., Manley, W. F., & Lee, C. M. (2005). The emerging archaeology of glaciers and ice patches: Examples from alaska's wrangell-st. elias national park and preserve. American Antiquity, 70(1), 129-143. doi:10.2307/40035272
Dove, C. J., Hare, P. G., & Heacker, M. (2005). Identification of ancient feather fragments found in melting alpine ice patches in southern yukon. Arctic, 58(1), 38-43.
Dyurgerov, M., & McCabe, G. J. (2006). Associations between accelerated glacier mass wastage and increased summer temperature in coastal regions. Arctic, Antarctic, and Alpine Research, 38(2), 190-197. doi:10.1657/1523-0430(2006)38[190:ABAGMW]2.0.CO;2
Eide, W., Birks, H. H., Bigelow, N. H., Peglar, S. M., & Birks, H. J. B. (2006). Holocene forest development along the setesdal valley, southern norway, reconstructed from macrofossil and pollen evidence. Vegetation History and Archaeobotany, 15(2), 65-85. doi:10.1007/s00334-005-0025-7
Elliott, G. P., & Kipfmueller, K. F. (2010). Multi-scale influences of slope aspect and spatial pattern on ecotonal dynamics at upper treeline in the southern rocky mountains, U.S.A. Arctic, Antarctic, and Alpine Research, 42(1), 45-56. doi:10.1657/1938-4246-42.1.45
ELVEN, R. (1978). Subglacial plant remains from the omnsbreen glacier area, south norway. Boreas, 7(2), 83-89. doi:10.1111/j.1502-3885.1978.tb00266.x
Elven, R. (1980). The omnsbreen glacier nunataks - A case study of plant immigration. Norwegian Journal of Botany, 27, 1-16.
Enquist, F. (1910). Über die jetzigen und ehemaligen lokalen gletscher in den gebirgen von jämtland und härjedalen. Sveriges Geologiska Undersökning Serie Ca.5, 5, 1-36.
Eronen, M., & Huttunen, P. (1993). Pine megafossils as indicators of holocene climatic changes in fennoscandia. Paläoklimaforschung - Palaeoclimate Research, 9, 29-40.
Erschbamer, B., Kiebacher, T., Mallaun, M., & Unterluggauer, P. (2009). Short-term signals of climate change along an altitudinal gradient in the south alps. Plant Ecology, 202(1), 79-89. doi:10.1007/s11258-008-9556-1
Fægri, K. (1933). Über die längenvariationen einiger gletscher des jostedalsbre und die dadurch bedingten pflanzensukzessionen. Bergens Museums Årbok 1933, 7(2), 1-255.
Fagre, D. B., Peterson, D. L., & Hessl, A. E. (2003). Taking the pulse of mountains: Ecosystem responses to climatic variability. Climatic Change, 59(1-2), 263-282. doi:10.1023/A:1024427803359
Farbregd, O. (1991). Gamle jaktpilar i snøfonnar: Bom i jakta - arkeologisk fulltreff. SPOR, 2, 4-10.
Farnell, R., Hare, P. G., Blake, E., Bowyer, V., Schweger, C., Greer, S., & Gotthardt, R. (2004). Multidisciplinary investigations of alpine ice patches in southwest yukon, canada: Paleoenvironmental and paleobiological investigations. Arctic, 57(3), 247-259. doi:10.14430/arctic502
Feeley, K. J., Silman, M. R., Bush, M. B., Farfan, W., Cabrera, K. G., Malhi, Y., . . . Saatchi, S. (2011). Upslope migration of andean trees. Journal of Biogeography, 38(4), 783-791. doi:10.1111/j.1365-2699.2010.02444.x
Gavelin, A. (1910). Über die gletscher des norra storfjället und des ammarfjället. Sveriges Geologiska Undersökning Ser.Ca, 5(4), 1-42.
Grabherr, G., Gottfried, M., & Pauli, H. (1994). Climate effects on mountain plants [7]. Nature, 369(6480), 448. doi:10.1038/369448a0
Grace, J., Berninger, F., & Nagy, L. (2002). Impacts of climate change on the tree line. Annals of Botany, 90(4), 537-544. doi:10.1093/aob/mcf222
Grosjean, M., Suter, P. J., Trachsel, M., & Wanner, H. (2007). Ice-borne prehistoric finds in the swiss alps reflect holocene glacier fluctuations. Journal of Quaternary Science, 22(3), 203-207. doi:10.1002/jqs.1111
Gunnarsdóttir, H. (1996). Holocene vegetation history and forest-limit fluctuations in smådalen, eastern jotunheimen, south norway. Palaeoclimate Research, 20, 233-255.
Haeberli, W., & Beniston, M. (1998). Climate change and its impacts on glaciers and permafrost in the alps. Ambio, 27(4), 258-265.
Hall, M. H. P., & Fagre, D. B. (2003). Modeled climate-induced glacier change in glacier national park, 1850-2100. Bioscience, 53(2), 131-140. doi:10.1641/0006-3568(2003)053[0131:MCIGCI]2.0.CO;2
Hallinger, M., Manthey, M., & Wilmking, M. (2010). Establishing a missing link: Warm summers and winter snow cover promote shrub expansion into alpine tundra in scandinavia. New Phytologist, 186(4), 890-899. doi:10.1111/j.1469-8137.2010.03223.x
Hammarlund, D., Velle, G., Wolfe, B. B., Edwards, T. W. D., Barnekow, L., Bergman, J., . . . Possnert, G. (2004). Palaeolimnological and sedimentary responses to holocene forest retreat in the scandes mountains, west-central sweden. Holocene, 14(6), 862-876. doi:10.1191/0959683604hl756rp
Harding, R., Kuhry, P., Christensen, T. R., Sykes, M. T., Dankers, R., & Van der Linden, S. (2002). Climate feedbacks at the tundra-taiga interface. Ambio, 31(SPEC. ISS. 12), 47-55.
Hinzman, L. D., Bettez, N. D., Bolton, W. R., Chapin, F. S., Dyurgerov, M. B., Fastie, C. L., . . . Yoshikawa, K. (2005). Evidence and implications of recent climate change in northern alaska and other arctic regions. Climatic Change, 72(3), 251-298. doi:10.1007/s10584-005-5352-2
Hofgaard, A. (1999). The role of "natural" landscapes influenced by man in predicting responses to climate change. Ecological Bulletins, 47, 160-167.
Hofgaard, A., Dalen, L., & Hytteborn, H. (2009). Tree recruitment above the treeline and potential for climate-driven treeline change. Journal of Vegetation Science, 20(6), 1133-1144. doi:10.1111/j.1654-1103.2009.01114.x
Holmgren, B., & Tjus, M. (1996). Summer air temperatures and tree line dynamics at abisko. Plant Ecology in the Subarctic Swedish Lapland, , 159-169.
Holmlund, P. (1993). Surveys of post-little ice age glacier fluctuations in northern sweden. Zeitschrift Für Gletscherkunde Und Glazialgeologie, 29(1), 1-13.
Holmlund, P., Jansson, P., & Pettersson, R. (2005). A re-analysis of the 58 year mass-balance record of storglaciären, sweden. Annals of Glaciology, 42, 389-394. doi:10.3189/172756405781812547
Holtmeier, F. -. (2003). Mountain Timberlines,
Holtmeier, F. -. (1974). Geoökologische beobachtungen und studien an der subarktischen und alpinen waldgrenze in vergleichender sicht (nördliches Fennoskandien/Zentralalpen). Geoökologische Beobachtungen Und Studien an Der Subarktischen Und Alpinen Waldgrenze in Vergleichender Sicht,
Holtmeier, F. -., & Broll, G. (2005). Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology and Biogeography, 14(5), 395-410. doi:10.1111/j.1466-822X.2005.00168.x
Holtmeier, F. -., & Broll, G. (2007). Treeline advance - driving processes and adverse factors. Landscape Online, 1(1), 1-33. doi:10.3097/LO.200701
Hormes, A., Muüller, B. U., & Schlüchter, C. (2001). The alps with little ice: Evidence for eight holocene phases of reduced glacier extent in the central swiss alps. Holocene, 11(3), 255-265. doi:10.1191/095968301675275728
Hörnberg, G., Bohlin, E., Hellberg, E., Bergman, I., Zackrisson, O., Olofsson, A., . . . Påsse, T. (2006). Effects of mesolithic hunter-gatherers on local vegetation in a non-uniform glacio-isostatic land uplift area, northern sweden. Vegetation History and Archaeobotany, 15(1), 13-26. doi:10.1007/s00334-005-0006-x
Hughes, L. (2000). Biological consequences of global warming: Is the signal already apparent? Trends in Ecology and Evolution, 15(2), 56-61. doi:10.1016/S0169-5347(99)01764-4
Humlum, O., Elberling, B., Hormes, A., Fjordheim, K., Hansen, O. H., & Heinemeier, J. (2005). Late-holocene glacier growth in svalbard, documented by subglacial relict vegetation and living soil microbes. Holocene, 15(3), 396-407. doi:10.1191/0959683605hl817rp
Ives, J. D. (1991). Landscape change and human response during a thousand years of climatic fluctuations and volcanism: Skaftafell, southeast iceland. Pirineos, 137, 5-50.
Joerin, U. E., Nicolussi, K., Fischer, A., Stocker, T. F., & Schlüchter, C. (2008). Holocene optimum events inferred from subglacial sediments at tschierva glacier, eastern swiss alps. Quaternary Science Reviews, 27(3-4), 337-350. doi:10.1016/j.quascirev.2007.10.016
Karlén, W. (1976). Lacustrine sediments and tree limit variations as evidence of holocene climatic variations in lappland, northern sweden. Geografiska Annaler, 58 A(A), 1-34.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Lisa Öberg, Leif Kullman
This work is licensed under a Creative Commons Attribution 4.0 International License.