Reasons for an outstanding plant diversity in the tropical Andes of Southern Ecuador

Authors

  • Michael Richter Institute of Geography, University of Erlangen-Nürnberg, Kochstr.4/4, 91054 Erlangen, Germany
  • Karl-Heinz Diertl Institute of Geography, University of Erlangen-Nürnberg, Kochstr.4/4, 91054 Erlangen, Germany
  • Paul Emck Institute of Geography, University of Erlangen-Nürnberg, Kochstr.4/4, 91054 Erlangen, Germany
  • Thorsten Peters Institute of Geography, University of Erlangen-Nürnberg, Kochstr.4/4, 91054 Erlangen, Germany
  • Erwin Beck Department of Plant Physiology, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany

DOI:

https://doi.org/10.3097/LO.200912

Keywords:

Andean depression, Disturbance ecology, Scale dependent approach, Tropical mountain forests, Vascular plant diversity

Abstract

Long-term field studies in the scope of a multidisciplinary project in southern Ecuador revealed extraordinary high species numbers of many organismic groups. This article discusses reasons for the outstanding vascular plant diversity using a hierarchical scale-oriented top-down approach (Grüninger 2005), from the global scale to the local microscale. The global scale explains general (paleo-) ecological factors valid for most parts of the humid tropics, addressing various hypotheses and theories, such as the "greater effective evolutionary time", constant input of "accidentals", the "seasonal variability hypothesis", the "intermediate disturbance hypothesis", and the impact of soil fertility. The macroscale focuses on the Andes in northwestern South America. The tropical Andes are characterised by many taxa of restricted range which is particularly true for the Amotape-Huancabamba region, i.e. the so called Andean Depression, which is effective as discrete phytogeographic transition as well as barrier zone. Interdigitation of northern and southern flora elements, habitat fragmentation, geological and landscape history, and a high speciation rate due to rapid genetic radiation of some taxa contribute to a high degree of diversification. The mesoscale deals with the special environmental features of the eastern mountain range, the Cordillera Real and surrounding areas in southern Ecuador. Various climatic characteristics, the orographic heterogeneity, the geologic and edaphic conditions as well as human impact are the most prominent factors augmenting plant species diversity. On microscale, prevailing regimes of disturbance and environmental stresses, the orographic basement, as well as the general role on the various mountain chains are considered. Here, micro-habitats e.g. niches for epiphytes, effects of micro-relief patterns, and successions after small-sized disturbance events are screened. Direct effects of human impact are addressed and a perspective of possible effects of climate change on plant diversity is presented.

References

Ayers, T. (1999). Biogeography of lysipomia (campanulaceae), a high elevation endemic: An illustration of species richness at the huancabamba depression, peru. Arnaldoa, 6, 13-28.

Bach, K., Kessler, M., & Gradstein, S. R. (2007). A simulation approach to determine statistical significance of species turnover peaks in a species-rich tropical cloud forest. Diversity and Distributions, 13(6), 863-870. doi:10.1111/j.1472-4642.2007.00357.x

Barthlott, W., Hostert, A., Kier, G., Küper, W., Kreft, H., Mutke, J., . . . Sommer, J. H. (2007). Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde, 61(4), 305-315. doi:10.3112/erdkunde.2007.04.01

Barthlott, W., Mutke, J., Rafiqpoor, M. D., Kier, G., & Kreft, H. (2005). Global centres of vascular plant diversity. Nova Acta Leopoldina, 92(342), 61-83.

Beck, E., Makeschin, F., Haubrich, F., Richter, M., Bendix, J., & Valerezo, C. (2008). The ecosystem (reserva biológica san francisco). Gradients in a Tropical Mountain Ecosystem of Ecuador, 198, 1-13.

Beck, E., Mosandl, R., Richter, M., & Kottke, I. (2008). The investigated gradients. in: Beck. Gradients in a Tropical Mountain Ecosystem of Ecuador, 198, 55-62.

Beck, E., & Richter, M. (2008). Ecological aspects of a biodiversity hotspot in the andes of southern ecuador. Biodiversity and Ecology Series, 2, 195-217.

Behling, H. (2010). Tropical mountain forest dynamics in mata atlantica and northern andean biodiversity hotspots during the late quaternary. Tropical mountain forest: Patterns and processes in a biodiversity hotspot (pp. 25-33)

Bendix, J., Rollenbeck, R., Göttlicher, D., & Cermak, J. (2006). Cloud occurrence and cloud properties in ecuador. Climate Research, 30(2), 133-147. doi:10.3354/cr030133

Bendix, J., Rollenbeck, R., Richter, M., Fabian, P., & Emck, P. (2008). Climate. Gradients in a Tropical Mountain Ecosystem of Ecuador, , 63-73.

Benzing, D. H. (1987). Vascular epiphytism: Taxonomic participation and adaptive diversity. Annals of the Missouri Botanical Garden, 74(2), 183-204.

Brako, L., & Zarucchi, J. L. (1993). Catalogue of the flowering plants and gymnosperms of peru. Monogr.Syst.Bot.Missouri Bot.Gard., 45, 1-1286.

Brenning, A. (2005). Spatial prediction models for landslide hazards: Review, comparison and evaluation. Natural Hazards and Earth System Science, 5(6), 853-862. doi:10.5194/nhess-5-853-2005

Bussmann, R. W. (2001). Epiphyte diversity in a tropical andean forest-reserva biológica san francisco, zamora-chinchipe, ecuador. Ecotropica, 7, 43-59.

Bussmann, R. W., Wilcke, W., & Richter, M. (2008). Landslides as important disturbance regimes - causes and regeneration. Gradients in a Tropical Mountain Ecosystem of Ecuador, 198, 319-330.

Clinebell II, R. R., Phillips, O. L., Gentry, A. H., Stark, N., & Zuuring, H. (1995). Prediction of neotropical tree and liana species richness from soil and climatic data. Biodiversity and Conservation, 4(1), 56-90. doi:10.1007/BF00115314

Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C., & Longino, J. T. (2008). Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science, 322(5899), 258-261. doi:10.1126/science.1162547

Colwell, R. K., Rahbek, C., & Gotelli, N. J. (2004). The mid-domain effect and species richness patterns:What have we learned so far? The American Naturalist, 163(3), E1-23. doi:10.1086/382056

Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science, 199(4335), 1302-1310. doi:10.1126/science.199.4335.1302

Cotton, E. (2002). Melastomataceae en el sur de ecuador. Botánica Austroecuatoriana.Estudios Sobre Los Recursos Vegetales En Las Provincias De El Oro, Loja Y Zamora-Chinchipe, , 137-158.

Diertl, K. -. (2006). Phytodiversität an Der Waldgrenze in Südecuador,

Dillon, M. O., Sagástegui, A., Sánchez, I. V., Llatas, S. Q., & Hensold, N. (1995). Floristic inventory and biogeographic analysis of montane forests in northwestern peru. Biodiversity and Conservation of Neotropical Montane Forests,

Emck, P. (2007). A climatology of south ecuador. A Climatology of South Ecuador,

Emck, P., Muñoz Moreira, A., & Richter, M. (2007). El clima y sus efectos en la vegetació. Botánica Económica De Los Andes Centrales, , 11-36.

Emck, P., & Richter, M. (2008). An upper threshold of enhanced global shortwave irradiance in the troposphere derived from field measurements in tropical mountains. Journal of Applied Meteorology and Climatology, 47(11), 2828-2845. doi:10.1175/2008JAMC1861.1

Fränzle, O. (1994). Thermodynamic aspects of species diversity in tropical and ectropical plant communities. Ecological Modelling, 75-76(C), 63-70. doi:10.1016/0304-3800(94)90007-8

Freiberg, M., & Freiberg, E. (2000). Epiphyte diversity and biomass in the canopy of lowland and montane forests in ecuador. Journal of Tropical Ecology, 16(5), 673-688. doi:10.1017/S0266467400001644

Galvez, J. R., Ordonez, G., & Bussmann, R. W. (2003). Estructura del bosque montano perturbado y noperturbado en el sur de ecuador structure of disturbed and undisturbed mountain forests in southern ecuador. Lyonia, 3, 83-98.

Garreaud, R. D., Vuille, M., Compagnucci, R., & Marengo, J. (2009). Present-day south american climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 281(3-4), 180-195. doi:10.1016/j.palaeo.2007.10.032

Gentry, A. H. (1986). Endemism in tropical versus temperate plant communities. Conservation Biology: The Science of Scarcity and Diversity, , 153-181.

Gentry, A. H. (1982). Neotropical floristic diversity: Phytogeographical connections between central and south america, pleistocene climatic fluctuations, or an accident of the andean orogeny? Annals - Missouri Botanical Garden, 69(3), 557-593. doi:10.2307/2399084

Gentry, A. H. (1995). Patterns of diversity and floristic composition in neotropical montane forests. Biodiversity and Conservation of Neotropical Montane Forests.Proc.Symposium, New York Botanical Garden, 1993, , 103-126.

Gentry, A. H. (1982). Patterns of neotropical plant species diversity. Evolutionary Biology, 15, 1-84.

Gentry, A. H., & Dodson, C. H. (1987). Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden, 74, 205-233.

Givnish, T. J. (1999). On the causes of gradients in tropical tree diversity. Journal of Ecology, 87(2), 193-210. doi:10.1046/j.1365-2745.1999.00333.x

Gradstein, S. R., Kessler, M., Lehnert, M., Abiy, M., Homeier, J., Mandl, N., . . . Richter, M. (2008). Vegetation, climate and soil of the unique purdiaea forest of southern ecuador. Ecotropica, 14, 15-26.

Grime, J. P. (1973). Control of species density in herbaceous vegetation. Journal of Environmental Management, 1, 151-167.

Grüninger, F. (2005). Scale dependent aspects of plant diversity in semiarid high mountain regions. Passauer Schriften Zur Geographie, 21

Grüninger, F., & Fickert, T. (2003). Revealing diversity patterns of vascular plants and their causes in semiarid high mountain regions. A top-down approach for great basin mountain ranges, USA. [Muster der Pflanzendiversität in semiariden Hochgebirgen und ihre Ursachen - Ein 'top-down approach' für Gebirge des Great Basin, USA] Erdkunde, 57(3), 199-215. doi:10.3112/erdkunde.2003.03.03

Gustafsson, M. H. G., Winter, K., & Bittrich, V. (2007). Diversity, phylogeny and classification of clusia. Clusia: A Woody Neotropical Genus of Remarkable Plasticity and Diversity, 194, 95-116.

Gustafsson, M. H. G., Winter, K., & Bittrich, V. (2007). Diversity, phylogeny and classification of clusia. Clusia: A Woody Neotropical Genus of Remarkable Plasticity and Diversity, 194, 95-116.

Hart, T. B., Hart, J. A., & Murphy, P. G. (1989). Monodominant and species-rich forests of the humid tropics: Causes for their co-occurrence. American Naturalist, 133(5), 613-633. doi:10.1086/284941

Hartig, K., & Beck, E. (2003). The bracken fern (pteridium arachnoideum (kaulf.) maxon) dilemma in the andes of southern ecuador. Ecotropica, 9, 3-13.

Hensold, N. (1999). Las angiospermas del departamento de cajamarca. Arnaldoa, 6(2), 141-184.

Herrera, C. M., & Pellmyr, O. (2002). Plant-Animal Interactions: An Evolutionary Approach,

Herzog, S. K., Kessler, M., & Bach, K. (2005). The elevational gradient in andean bird species richness at the local scale: A foothill peak and a high-elevation plateau. Ecography, 28(2), 209-222. doi:10.1111/j.0906-7590.2005.03935.x

Homeier, J., & Werner, F. A. (2008). Spermatophyta. Ecotropical Monographs, 4, 15-58.

Huston, M. A. (1994). Biological diversity: The coexistence of species on changing landscapes. Biological Diversity: The Coexistence of Species on Changing Landscapes,

Johansson, D. (1974). Ecology of vascular epiphytes in west african rain forest. Acta Phytogeographica Suecica, 59, 1-136.

Jordan, E., Ungerechts, L., Cáceres, B., Peñafiel, A., & Francou, B. (2005). Estimation by photogrammetry of the glacier recession on the cotopaxi volcano (ecuador) between 1956 and 1997. Hydrological Sciences Journal, 50(6) doi:10.1623/hysj.2005.50.6.949

Jørgensen, P. M., & León-Yánez, S. (1999). Catalogue of the Vascular Plants of Ecuador,

Jorgensen, P. M., Ulloa Ulloa, C., Madsen, J. E., & Valencia R., R. (1995). A floristic analysis of the high andes of ecuador. Biodiversity and Conservation of Neotropical Montane Forests.Proc.Symposium, New York Botanical Garden, 1993, , 221-237.

Jost, L. (2004). Explosive local radiation of the genus teagueia (orchidaceae) in the upper pastaza watershed of ecuador. Lyonia, 7(1), 41-47.

Kapos, V., Pallant, E., Bien, A., & Freskos, S. (1990). Gap frequencies in lowland rain forest sites on contrasting soils in amazonian ecuador. Biotropica, 22(3), 218-225. doi:10.2307/2388531

Kessler, M. (2001). Pteridophyte species richness in andean forests in bolivia. Biodiversity and Conservation, 10(9), 1473-1495. doi:10.1023/A:1011811224595

Kessler, M. (2002). The elevational gradient of andean plant endemism: Varying influences of taxon-specific traits and topography at different taxonomic levels. Journal of Biogeography, 29(9), 1159-1165. doi:10.1046/j.1365-2699.2002.00773.x

Kier, G., Mutke, J., Dinerstein, E., Ricketts, T. H., Küper, W., Kreft, H., & Barthlott, W. (2005). Global patterns of plant diversity and floristic knowledge. Journal of Biogeography, 32(7), 1107-1116. doi:10.1111/j.1365-2699.2005.01272.x

Knapp, S. (2002). Assessing patterns of plant endemism in neotropical uplands. Botanical Review, 68(1), 22-37. doi:10.1663/0006-8101(2002)068[0022:APOPEI]2.0.CO;2

Kreft, H., Köster, N., Küper, W., Nieder, J., & Barthlott, W. (2004). Diversity and biogeography of vascular epiphytes in western amazonia, yasuní, ecuador. Journal of Biogeography, 31(9), 1463-1476. doi:10.1111/j.1365-2699.2004.01083.x

Krömer, T., Kessler, M., Robbert Gradstein, S., & Acebey, A. (2005). Diversity patterns of vascular epiphytes along an elevational gradient in the andes. Journal of Biogeography, 32(10), 1799-1809. doi:10.1111/j.1365-2699.2005.01318.x

Lægaard, S. (2002). Géneros de gramíneas en el sur de ecuador. Botanica Austroecuatoriana: Estudios Sobre Los Recursos Vegetales En Las Provincias De El Oro, , 257-288.

Laube, S., & Zotz, G. (2003). Which abiotic factors limit vegetative growth in a vascular epiphyte? Functional Ecology, 17(5), 598-604. doi:10.1046/j.1365-2435.2003.00760.x

Lieberman, M., Lieberman, D., & Peralta, R. (1989). Forests are not just swiss cheese: Canopy stereogeometry of non-gaps in tropical forests. Ecology, 70(3), 550-552.

Liede-Schumann, S., & Breckle, S. -. (2013). Provisional checklists of flora and fauna of the san francisco valley and its surroundings. (reserva biológica san Francisco/Prov. zamora-chinchipe, southern ecuador). Ecotrop.Monogr.,

Litherland, M., Aspden, J. A., & Jemielita, R. A. (1994). The metamorphic belts of ecuador. Overseas Memoir of the British Geological Survey, 11

Lozano, P., Busmann, R., Kupers, M., & Diego Lozano, C. (2008). Natural landslides and pioner communities in the mountain ecosystems of eastern podocarpus national park. [Deslizamientos naturales y comunidades pionera de ecosistemas montanos al occidente del parque nacional podocarpus (Ecuador)] Caldasia, 30(1), 1-19.

Luteyn, J. L. (2002). Diversity, Adaptation, and Endemism in Neotropical Ericaceae: Biogeographical Patterns in the Vaccinieae,

Margalef, R. (1994). Dynamic aspects of diversity. Journal of Vegetation Science, 5(4), 451-456. doi:10.2307/3235970

Martínez, A., Mahecha, M. D., Lischeid, G., & Beck, E. (2008). Succession stages of vegetation regeneration: Secondary tropical mountain forests. Gradients in a Tropical Mountain Ecosystem of Ecuador, , 425-431.

Mittermeier, R. A., Gil, P. R., & Mittermeier, C. G. (1997). Megadiversity: Earth's Biologically Wealthiest Nations,

Mosandl, R., & Günter, S. (2010). Sustainable management of tropical mountain forests in ecuador. Tropical mountain forest: Patterns and processes in a biodiversity hotspot (pp. 177-193)

Mueller-Dombois, D. (1998). Regenwalddynamik und landschaftsentwicklung auf den hawai'i inseln. Naturwissensch.Rundschau, 51, 298-304.

Mutke, J., & Barthlott, W. (2008). Biodiversität und ihre veränderungen im rahmen des globalen umweltwandels: Biologische aspekte. Biodiversität,

Mutke, J., & Barthlott, W. (2005). Patterns of vascular plant diversity at continental to global scales. Biologiske Skrifter, 55, 521-531.

Nabe-Nielsen, J. (2001). Diversity and distribution of lianas in a neotropical rain forest, yasuní national park, ecuador. Journal of Tropical Ecology, 17(1), 1-19. doi:10.1017/S0266467401001018

Neill, D. A. (2002). Botanical Exploration of the Cordillera Del Cóndor,

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., . . . Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on earth. Bioscience, 51(11), 933-938. doi:10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

Van der Hammen, T. (1989). History of the montane forests of the northern andes. Plant Systematics and Evolution, 162(1-4), 109-114. doi:10.1007/BF00936913

Van Der Hammen, T., & Hooghiemstra, H. (2000). Neogene and quaternary history of vegetation, climate, and plant diversity in amazonia. Quaternary Science Reviews, 19(8), 725-742. doi:10.1016/S0277-3791(99)00024-4

Van Der Maarel, E. (1988). Species diversity in plant communities in relation to structure and dynamics. Diversity and Pattern in Plant Communities, , 1-14.

LO.200912

Downloads

Published

16.06.2009

How to Cite

Richter, M., Diertl, K.-H., Emck, P., Peters, T., & Beck, E. (2009). Reasons for an outstanding plant diversity in the tropical Andes of Southern Ecuador. Landscape Online, 12. https://doi.org/10.3097/LO.200912

Issue

Section

Research Article