Landscape Metrics Explain the Ecological Susceptibility of Terrestrial Ecosystems
DOI:
https://doi.org/10.3097/LO.2022.1101Keywords:
Susceptibility, Landscape structure, Subjective, Objective, Modeling, Sensitivity, uncertaintyAbstract
This study examines the effects of the change in the shape of landscape patches, known as landscape structure, on ecological susceptibility, which is defined using the object-oriented method. The aim is to determine whether ecological susceptibility is influenced by the shape of the landscape patches in the southern basin of the Caspian Sea. The multivariate linear regression approach is applied to discover the extent to which the mean, median, and weighted average of the landscape structure metrics can explain the total variations of the ecological susceptibility. To determine the optimal models, an intermodel comparison is conducted using the Akaike information criterion. Sensitivity and uncertainty analyses were performed to determine how sensitive ecological susceptibility is to changes in the variables of the models and how they behave under varying conditions. The models (0.64≥r2≥0.27, p ≤ 0.05) indicate that the landscape structure metrics can be applied to predict ecological susceptibility. Examining the mean, median, and weighted average of the landscape metrics in estimating ecological susceptibility also reveals that the models made by the mean and median values have less uncertainty than those developed by the weighted average. The results show that the regularity or irregularity in the shape of the landscape patches and the degree of contiguity of the land use/land cover patches can significantly affect ecological susceptibility. Closed deciduous broad-leaf forest patches, closed mixed forest patches, and open mixed forest patches can be considered crucial land use/land covers to estimate ecological susceptibility.
References
Abdel Kawy, Wael., Belal, Abdelaziz. 2011. GIS to Assess the Environmental Sensitivity for Desertification in Soil Adjacent to El-Manzala Lake, East of Nile Delta, Egypt. American-Eurasian Journal of Agricultural & Environmental Sciences. 10. 844-856
Abuzaid, A. S., AbdelRahman, M. A. E., Fadl, M. E., Scopa, A. 2021. Land Degradation Vulnerability Mapping in a Newly- Reclaimed Desert Oasis in a Hyper-Arid Agro-Ecosystem Using AHP and Geospatial Techniques. Agronomy, 11(7), 1426. https://doi.org/10.3390/agronomy11071426 DOI: https://doi.org/10.3390/agronomy11071426
Afzali, S., Khanamani, A., Maskooni, E., Berndtsson, R. 2021. Quantitative Assessment of Environmental Sensitivity to Desertification Using the Modified MEDALUS Model in a Semiarid Area. Sustainability, 13(14), 7817. https://doi.org/10.3390/su13147817 DOI: https://doi.org/10.3390/su13147817
Ahearn, D., Sheibley, R., Dahlgren, R., Anderson, M., Johnson, J., Tate, K. 2005. Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California. Journal of Hydrology, 313(3-4), pp.234-247. https://doi.org/10.1016/j.jhydrol.2005.02.038 DOI: https://doi.org/10.1016/j.jhydrol.2005.02.038
Al-Adamat, R. 2017. Modelling Surface Water Susceptibility to Pollution Using GIS. Journal Of Geographic Information System, 09(03), 293-308. https://doi.org/10.4236/jgis.2017.93018 DOI: https://doi.org/10.4236/jgis.2017.93018
Amiri, B.J. 2019. Environmental Impact Assessment, 2nd Edition. University Press, University of Tehran, 228 p.
Amiri, B.J. 2020. Environmental Modeling 2nd Edition. University Press, University of Tehran, 150 p.
Arora, A., Pandey, M., Mishra, V., Kumar, R., Rai, P., Costache, R. et al. 2021. Comparative evaluation of geospatial scenario-based land change simulation models using landscape metrics. Ecological Indicators, 128, 107810. https://doi.org/10.1016/j.ecolind.2021.107810 DOI: https://doi.org/10.1016/j.ecolind.2021.107810
Baker, W.L., Cai, Y. 1992. The role programs for multiscale analysis of landscape structure using the GRASS geographical information system. Landscape Ecology 7 (4), 291–302. https://doi.org/10.1007/BF00131258 DOI: https://doi.org/10.1007/BF00131258
Batar, A. K., Shibata, H., Watanabe, T. 2021. A Novel Approach for Forest Fragmentation Susceptibility Mapping and Assessment: A Case Study from the Indian Himalayan Region. Remote Sensing, 13(20), 4090. https://doi.org/10.3390/rs13204090 DOI: https://doi.org/10.3390/rs13204090
Belsky, J. 2013. Differential Susceptibility to Environmental Influences. ICEP 7, 15–31. https://doi.org/10.1007/2288-6729-7-2-15 DOI: https://doi.org/10.1007/2288-6729-7-2-15
Belsky, J., Pluess, M. 2016. Differential susceptibility to environmental influences. In D. Cicchetti (Ed.), Developmental psychopathology: Developmental neuroscience (pp. 59–106). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119125556.devpsy202 DOI: https://doi.org/10.1002/9781119125556.devpsy202
Beroya-Eitner, M. 2016. Ecological vulnerability indicators. Ecological Indicators, 60, pp.329-334. https://doi.org/10.1016/j.ecolind.2015.07.001 DOI: https://doi.org/10.1016/j.ecolind.2015.07.001
Bourgoin, Clement. 2019. A framework for evaluating forest ecological vulnerability in tropical deforestation fronts from the assessment of forest degradation in a landscape approach: Case studies from Brazil and Vietnam. Geography. Theses, Institut agronomique, vétérinaire et forestier de France. English. https://pastel.archives-ouvertes.fr/tel-02939539
Brandt, J. and Geeson, N. 2015. Desertificationindicatorsystem for Mediterranean Europe. In: Dykes, A.P., Mulligan M., Wainwright J. (eds). Monitoring and Modelling Dynamic Environments. John Wiley & Sons, Ltd. pp. 121-137. https://doi.org/10.1002/9781118649596.ch6 DOI: https://doi.org/10.1002/9781118649596.ch6
Brock, J., Lavoie, D., Poore, R. 2009. Introduction to Northern Gulf of Mexico ecosystem change and hazards susceptibility. Geo-Marine Letters, 29(6), pp.343-347. https://doi.org/10.1007/s00367-009-0170-6 DOI: https://doi.org/10.1007/s00367-009-0170-6
Brown, M., Lappin, M., Brown, J., Munkhtsog, B., Swanson, W. 2005. Exploring The Ecologic Basis For Extreme Susceptibility Of Pallas’ Cats (Otocolobus Manual) To Fatal Toxoplasmosis. Journal of Wildlife Diseases, 41(4), pp.691-700. https://doi.org/10.7589/0090-3558-41.4.691 DOI: https://doi.org/10.7589/0090-3558-41.4.691
Buchhorn, M., Smets, B., Bertels, L., Lesiv, M., Tsendbazar, N-E., Herold, M., Fritz, S. 2019. Copernicus Global Land Service: Land Cover 100m, epoch “2015”, Globe (Version V2.0.2) [10.5281/zenodo.3243509]. Zenodo. https://doi.org/10.5281/zenodo.3939038
Burnham, K.P., Anderson, D.R. 2004. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research, 33(2), 261–304. https://doi.org/10.1177/0049124104268644 DOI: https://doi.org/10.1177/0049124104268644
Butler, T-J., Likens, G.E. 2019. “acid rain”. Encyclopedia Britannica, https://www.britannica.com/science/acid-rain [Accessed 3 June 2022]
Cale, P.G., Hobbs, R.J. 1994 Landscape heterogeneity indices: Problems of scale and applicability, with particular reference to animal habitat description. Pacific Conservation Biology 1: 183–193. https://doi.org/10.1071/PC940183 DOI: https://doi.org/10.1071/PC940183
Birkmann, J., et al. 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press. pp. 65–108.
Cardona, O., Van Aalst, M., Birkmann, J., Fordham, M., McGregor, G., Perez, R., Thomalla, F. 2012. Determinants of Risk: Exposure and Vulnerability. In: Field, C., Barros, V., Stocker, T., Dahe Q. (eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (pp. 65- 108). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139177245.005 DOI: https://doi.org/10.1017/CBO9781139177245.005
Chatterjee, S., Hadi, A.S., Price, B. 2000. The Use of Regression Analysis by Example. John Wiley and Sons, New York, USA. http://doi.org/10.4236/cmb.2014.41001 DOI: https://doi.org/10.4236/cmb.2014.41001
Cushman, S.A., and McGarigal, K. 2019 Metrics and Models for Quantifying Ecological Resilience at Landscape Scales. Frontiers in Ecology and Evolution 7:440. https://doi.org/10.3389/fevo.2019.00440 DOI: https://doi.org/10.3389/fevo.2019.00440
Daoud, Jamal I. 2017. Multicollinearity and Regression Analysis. Journal of Physics: Conf. Ser. 949 012009. Conference Series, 949, 012009. https://doi.org/10.1088/1742-6596/949/1/012009 DOI: https://doi.org/10.1088/1742-6596/949/1/012009
Darwish, T., Zdruli, P., Saliba, R., Awad, M., Shaban, A., Faour, G. 2012. Vulnerability to Desertification in Lebanon Based on Geo-information and Socioeconomic Conditions. Journal of Environmental Science and Engineering B. ISSN 1934-8932.
De Lange, H.J., Sala, S., Vighi, M., Faber, J.H. 2010. Ecological vulnerability in risk assessment – a review and perspectives. Sci. Total Environ. 408, 3871–3879. https://doi.org/10.1016/j.scitotenv.2009.11.009 DOI: https://doi.org/10.1016/j.scitotenv.2009.11.009
De Lange, H.J.D., Lahr, J., Van der Pol, J.J.C., Wessels, Y., Faber, J.H. 2009. Ecological vulnerability in wildlife: an expert judgment and multicriteria analysis tool using ecological traits to assess the relative impact of pollutants. Environ. Toxicol Chemi. 28, 2233–2240, http://doi.org/10.1897/08-626.1 DOI: https://doi.org/10.1897/08-626.1
De Paola, F. Ducci, Daniela Giugni, Maurizio. 2013. Desertification and erosion sensitivity. A case study in southern Italy: The Tusciano Rivercatchment. Environmental Earth Sciences. 70. 2179-2190. https://doi.org/10.1007/s12665-013-2294-2 DOI: https://doi.org/10.1007/s12665-013-2294-2
Destoumieux-Garzón, D., Matthies-Wiesler, F., Bierne, N., Binot, A., Boissier, J., Devouge, A. et al. 2022. Getting out of crises: Environmental, social-ecological and evolutionary research is needed to avoid future risks of pandemics. Environment International, 158, 106915. https://doi.org/10.1016/j.envint.2021.106915 DOI: https://doi.org/10.1016/j.envint.2021.106915
Dinh Van, K., Janssens, L., Debecker, S., De Jonge, M., Lambret, P., Nilsson-Örtman, V. et al. 2013. Susceptibility to a metal under global warming is shaped by thermal adaptation along a latitudinal gradient. Global Change Biology, 19(9), 2625-2633. https://doi.org/10.1111/gcb.12243 DOI: https://doi.org/10.1111/gcb.12243
Djeddaoui, F., Chadli, M., Gloaguen, R. 2017. Desertification Susceptibility Mapping Using Logistic Regression Analysis in the Djelfa Area, Algeria. Remote Sensing, 9(10), 1031. https://doi.org/10.3390/rs9101031 DOI: https://doi.org/10.3390/rs9101031
Evans, M., Scavia, D. 2013. Exploring estuarine eutrophication sensitivity to nutrient loading. Limnology and Oceanography, 58(2), pp.569-578. https://doi.org/10.4319/lo.2013.58.2.0569 DOI: https://doi.org/10.4319/lo.2013.58.2.0569
Ferrara, A., Bellotti A., Faretta S., Mancino G., Taberner M. 1999. Identification and assessment of environmentally sensitive areas by remote sensing. MEDALUS III 2.6.2. OU Final Report. King’s College, London. 2:397–429.
Forman, RTT., Godron, M. 1986. Landscape Ecology. New York: Wiley. pp. 90. https://doi.org/10.1017/S0376892900008766 DOI: https://doi.org/10.1017/S0376892900008766
Frazier, Amy E., Kedron, Peter. 2017. Landscape Metrics: Past Progress and Future Directions. Current Landscape Ecology Reports, 2(3), 63–72. doi: https://doi.org/10.1007/s40823-017-0026-0 DOI: https://doi.org/10.1007/s40823-017-0026-0
Gandhi, G., Parthiban, S., Thummalu, N., Christy, A. 2015. Ndvi: Vegetation Change Detection Using Remote Sensing and Gis – A Case Study of Vellore District. Procedia Computer Science, 57, 1199-1210. https://doi.org/10.1016/j.procs.2015.07.415 DOI: https://doi.org/10.1016/j.procs.2015.07.415
GIZ. 2013. Guide méthodologique Approche spatiale multifactorielle d’analyse de la vulnérabilité des écosystèmes face au changement climatique Cas de la subéraie en Tunisie. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)—GmbH; Ministère fédéral allemand de la Coopération Economique et du Développement (BMZ) and Appui à la mise en oeuvre de la Convention Cadre des Nations Unies sur le Changement Climatique (CCNUCC) en Tunisie, Tunisia.
Grennfelt, P., Engleryd, A., Forsius, M., Hov, Ø., Rodhe, H., Cowling, E. 2020. Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio, 49(4), 849-864. https://doi.org/10.1007/s13280-019-01244-4 DOI: https://doi.org/10.1007/s13280-019-01244-4
Guilan Meteorological Organization. 2019. I.R. of Iran Meteorological Organization, Rasht, Iran. http://www.irimo.ir/ [Accessed 3 June 2022]
Halbac-Cotoara-Zamfir, R., Polinesi, G., Chelli, F., Salvati, L., Bianchini, L., Marucci, A., Colantoni, A. 2022. Found in Complexity, Lost in Fragmentation: Putting Soil Degradation in a Landscape Ecology Perspective. Int. J. Environ. Res. Public Health 2022, 19, 2710. https://doi.org/10.3390/ijerph19052710 DOI: https://doi.org/10.3390/ijerph19052710
Hu, Y., Han, Y., Zhang, Y. 2020. Land desertification and its influencing factors in Kazakhstan. Journal Of Arid Environments, 180, 104203. https://doi.org/10.1016/j.jaridenv.2020.104203 DOI: https://doi.org/10.1016/j.jaridenv.2020.104203
Huang, J., Wang, Y., Zhang, L. 2022. Identifying Spatial Priority of Ecological Restoration Dependent on Landscape Quality Trends in Metropolitan Areas. Land, 11, 27. https://doi.org/10.3390/land11010027 DOI: https://doi.org/10.3390/land11010027
Istanbuly, M. N., Dostál, T., Jabbarian Amiri, B. 2021. Modeling the Soil Erosion Regulation Ecosystem Services of the Landscape in Polish Catchments. Water, 13(22), 3274. https://doi.org/10.3390/w13223274 DOI: https://doi.org/10.3390/w13223274
IUCN. 2010. IUCN Red List of Threatened Species. http://www.iucnredlist.org [Accessed 3 June 2022]
Jaeger, J.A. 2000. Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecology 15, 115–130. https://doi.org/10.1023/A:1008129329289 DOI: https://doi.org/10.1023/A:1008129329289
Jianping, L., Minrong, L., Jinnan, W., Jianjian, L., Hongwen, S., Maoxing, H. 2014. Global Environmental Issues and Human Wellbeing. Current Chinese Economic Report Series, 3-21. https://doi.org/10.1007/978-3-642-54678-5_1 DOI: https://doi.org/10.1007/978-3-642-54678-5_1
Keesing, F., Belden, L., Daszak, P., Dobson, A., Harvell, C., Holt, R. et al. 2010. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468(7324), 647-652. https://doi.org/10.1038/nature09575 DOI: https://doi.org/10.1038/nature09575
Klimkina, Iryna. 2013. Environmental Susceptibility and Resilience Due to Nuclear Anomalies in The Buccal Cells of Children and Adults from Technogenically - Loaded Regions of Ukraine. The 3rd International Geography Symposium, Kemer, Antalya, TURKEY. pp. 137-142. http://web.deu.edu.tr/geomed/proceedings/download/016_GeoMed_2013_Proceedings_137-142.pdf [Accessed 3 June 2022]
Knelman, J., Schmidt, S., Garayburu-Caruso, V., Kumar, S., Graham, E. 2019. Multiple, Compounding Disturbances in a Forest Ecosystem: Fire Increases Susceptibility of Soil Edaphic Properties, Bacterial Community Structure, and Function to Change with Extreme Precipitation Event. Soil Systems, 3(2), p.40. https://doi.org/10.3390/soilsystems3020040 DOI: https://doi.org/10.3390/soilsystems3020040
Kosmas, C., Kirkby M., Geeson N. 1999b. Manual on: key indicators of desertification and mapping environmentally sensitive areas to desertification. Energy, environment and sustainable development, EUR. European Commission, Brussels, ISBN 92-828-6349-2. p 18882. http://www.comap.ca/kmland/display.php?ID=253&DISPOP=VRCPR [Accessed 3 June 2022]
Kosmas, C., Poesen J., Briasouli H. 1999c. Key indicators of desertification at the ESA scale. In: Manual on key indicators of desertification and mapping ESAs to desertification. MEDALUS III Project. King’s College, London.
Kosmas, C., Ferrara, A., Briassouli, H., Imeson, A. 1999a. Methodology for mapping environmentally sensitive areas to desertification. In: The Medalus project. Mediterranean desertification and land use. Manual on key indicators of desertification and mapping environmentally sensitive areas to desertification. Eds. Kosmas, C., Kirkby, M., Geeson, M. E.U 18882. Pp 31–47 ISBN 92-828-6349-2.
Krebs, Charles. J. 2009. Ecology: The Experimental Analysis of Distribution and Abundance, 6th edition, Pearson, ISBN-13: 9780321688149, 672 pp.
Kun, Á., Oborny, B. Dieckmann, U. 2019. Five main phases of landscape degradation revealed by a dynamic mesoscale model analysing the splitting, shrinking, and disappearing of habitat patches. Sci Rep 9, 11149. https://doi.org/10.1038/s41598-019-47497-7 DOI: https://doi.org/10.1038/s41598-019-47497-7
Kupfer, J. A. 2012. Landscape ecology and biogeography: Rethinking landscape metrics in a post-FRAGSTATS landscape. Progress in Physical Geography, 36(3), 400–420. https://doi.org/10.1177%2F0309133312439594 DOI: https://doi.org/10.1177/0309133312439594
Kupková, L., Potůčková, M., Lhotáková, Z., Albrechtová, J. 2018. Forest cover and disturbance changes, and their driving forces: A case study in the Ore Mountains, Czechia, heavily affected by anthropogenic acidic pollution in the second half of the 20th century. Environmental Research Letters, 13(9), 095008. https://doi.org/10.1088/1748-9326/aadd2c DOI: https://doi.org/10.1088/1748-9326/aadd2c
Leitão, A.B., Miller, J., Ahern, J., McGarigal, K. 2012. Measuring Landscapes: A Planner’s Handbook. Island Press. ISBN: 1-4020-3978-6.
Matthews, W. 1975. Objective and Subjective Judgements in Environmental Impact Analysis. Environmental Conservation, 2(2), pp.121-131. https://doi.org/10.1017/S037689290000103X DOI: https://doi.org/10.1017/S037689290000103X
Mcgarigal, K. 2015. FRAGSTATS Help. http://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf [Accessed 3 June 2022]
McGarigal, K., Marks, B.J. 1995. FRAGSTATS: Spatial Analysis Program for Quantifying Landscape Structure. USDA Forest Service General Technical Report PNW-GTR-351. https://doi.org/10.2737/PNW-GTR-351 DOI: https://doi.org/10.2737/PNW-GTR-351
McGarigal, K., Tagil, S. Cushman, S.A. 2009. Surface metrics: an alternative to patch metrics for the quantification of landscape structure. Landscape Ecology 24, 433–450. https://doi.org/10.1007/s10980-009-9327-y DOI: https://doi.org/10.1007/s10980-009-9327-y
Mélo, A., Justino, F., Lemos, C., Sediyama, G., and Ribeiro, G. 2011. Suscetibilidade do ambiente a ocorrências de queimadas sob condições climáticas atuais e de futuro aquecimento global. Revista Brasileira de Meteorologia, 26(3), pp.401-418. https://doi.org/10.1590/S0102-77862011000300007 DOI: https://doi.org/10.1590/S0102-77862011000300007
Milecka, K., Mirosław-Grabowska, J., Zawisza, E., Kowalewski, G. 2020. Susceptibility of small boreal lakes to environmental changes as inferred from organic sediments of Lake Talvilampi (Finland). The Holocene, 30(3), 458–473. https://doi.org/10.1177/0959683619887432 DOI: https://doi.org/10.1177/0959683619887432
Mirghaed, F. A., Souri, B., Mohammadzadeh, M. et al. 2018. Evaluation of the relationship between soil erosion and landscape metrics across Gorgan Watershed in northern Iran. Environmental Monitoring Assessment 190, 643. https://doi.org/10.1007/s10661-018-7040-5 DOI: https://doi.org/10.1007/s10661-018-7040-5
Mohammadi, A., Fatemizadeh, F.2021. Quantifying Landscape Degradation Following Construction of a Highway Using Landscape Metrics in Southern Iran. Frontiers in Ecology and Evolution. 9:721313. https://doi.org/10.3389/fevo.2021.721313 DOI: https://doi.org/10.3389/fevo.2021.721313
Moser, D., Zechmeister, H.G., Plutzar, C. et al. 2002. Landscape patch shape complexity as an effective measure for plant species richness in rural landscapes. Landscape Ecology 17, 657–669. https://doi.org/10.1023/A:1021513729205 DOI: https://doi.org/10.1023/A:1021513729205
Myers, R. 1983. Site Susceptibility to Invasion by the Exotic Tree Melaleuca Quinquenervia in Southern Florida. The Journal of Applied Ecology, 20(2), https://doi.org/10.2307/2403532 DOI: https://doi.org/10.2307/2403532
Nascimento, V., Yesiller, N., Clarke, K., Ometto, J., Andrade, P., Sobral, A. 2017. Modeling the environmental susceptibility of landfill sites in California. GIScience & Remote Sensing, 54(5), pp.657-677. https://doi.org/10.1080/15481603.2017.1309126 DOI: https://doi.org/10.1080/15481603.2017.1309126
O’Neill, R., Krummel, J., Gardner, R., Sugihara, G., Jackson, B., Deangelis, D., Milne, B., Turner, Monica, Zygmunt, B., Christensen, S., Dale, Virginia, Graham, R. 1988. Indices of Landscape Pattern. Landscape Ecology. https://doi.org/10.1007/BF001627411.153-162.10.1007/BF00162741 DOI: https://doi.org/10.1007/BF00162741
Oguntola, E.A., Odeyemi, O.O., Eniola, A.D., et al. 2019. Susceptibility of six local rice cultivars and efficacy of eco- friendly botanical to sitophilus oryzae (L) (Coleoptera: Curculionidae). Plants & Agriculture Research 9(1):65-71. https://doi.org/10.15406/apar.2019.09.00413
Ouma, K., Shane, A., Syampungani, S. 2022. Aquatic Ecological Risk of Heavy-Metal Pollution Associated with Degraded Mining Landscapes of the Southern Africa River Basins: A Review. Minerals, 12(2), 225. https://doi.org/10.3390/min12020225 DOI: https://doi.org/10.3390/min12020225
Özcan, O., Musaoğlu, N. Türkeş, M. 2018. Assessing vulnerability of a forest ecosystem to climate change and variability in the western Mediterranean sub-region of Turkey. Journal of Forestry Research 29, 709–725. https://doi.org/10.1007/s11676-017-0505-5 DOI: https://doi.org/10.1007/s11676-017-0505-5
Pereira, C., Milanes, C., Correa, I., Pranzini, E., Cuker, B., Botero, C. 2022. A geomorphological model of susceptibility to the effect of human interventions for environmental licensing determination (SHIELD). Geoscience Frontiers, 13(2), 101343. https://doi.org/10.1016/j.gsf.2021.101343 DOI: https://doi.org/10.1016/j.gsf.2021.101343
Purevdorj, TS., Tateishi, R., Ishiyama, T., Honda, Y. 1998. Relationships between percent vegetation cover and vegetation indices. International Journal of Remote Sensing 19(18), 3519–3535. https://doi.org/10.1080/014311698213795 DOI: https://doi.org/10.1080/014311698213795
Qamar, N., Panhwar, S., Wang, P. 2019. Indicators of the ecological stress and environmental susceptibility of Keenjhar Lake, Sindh, Pakistan. Lakes & Reservoirs: Research & Management, 24(4), pp.394-401. https://doi.org/10.1111/lre.12293 DOI: https://doi.org/10.1111/lre.12293
Renard, Q., Pélissier, R., Ramesh, B., and Kodandapani, N. 2012. Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. International Journal of Wildland Fire, 21(4), p.368. https://doi.org/10.1071/WF10109 DOI: https://doi.org/10.1071/WF10109
Rutledge, D.T. 2003. Landscape Indices as Measures of the Effects of Fragmentation: Can Pattern Reflect Process? Department of Conservation, Wellington. New Zealand. ISBN: 0-478-22380-3. 27p.
Salvati, L., Mancino, G., Zuliani, E., Sateriano, A., Zitti, M., Ferrara, A. 2013. An expert system to evaluate environmental sensitivity: A local-scale approach to desertification risk. Applied Ecology and Environmental Research. 11. 611-627. ISSN: 1589-1623. DOI: https://doi.org/10.15666/aeer/1104_611627
Scavia, D., Liu, Y. 2009. Exploring Estuarine Nutrient Susceptibility. Environmental Science & Technology, 43(10), pp.3474-3479. https://doi.org/10.1021/es803401y DOI: https://doi.org/10.1021/es803401y
Song, W., Mu, X., Ruan, G., Gao, Z., Li, L., Yan, G. 2017. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. International Journal of Applied Earth Observation and Geoinformation, (58), 168–176. https://doi.org/10.1016/j.jag.2017.01.015 DOI: https://doi.org/10.1016/j.jag.2017.01.015
Straub, L., Williams, G., Pettis, J., Fries, I., Neumann, P. 2015. Superorganism resilience: eusociality and susceptibility of ecosystem service providing insects to stressors. Current Opinion in Insect Science, 12, pp.109-112. https://doi.org/10.1016/j.cois.2015.10.010 DOI: https://doi.org/10.1016/j.cois.2015.10.010
Sun, L., Ma, C., Li, Y. 2019. Multiple geo-environmental hazards susceptibility assessment: a case study in Luoning County, Henan Province, China. Geomatics, Natural Hazards, and Risk, 10(1), pp.2009-2029. https://doi.org/10.1080/19475705.2019.1658648 DOI: https://doi.org/10.1080/19475705.2019.1658648
Tao, F., Hayashi, Y., Lin, E. 2002. Water, Air, And Soil Pollution, 140(1/4), 247-260. https://doi.org/10.1023/A:1020175022958 DOI: https://doi.org/10.1023/A:1020175022958
Tejaswi, Giri. 2007. Manual of deforestation, degredation, and fragmentation using remote sensing and GIS. FAO: Food and Agriculture Organization of the United Nations, strengthening monitoring, assessement ad reporting on sustainable forest management in Asia (GCP/INT/988/JPN). https://www.fao.org/3/ap163e/ap163e.pdf [Accessed 3 June 2022]
Tremblay, J.E., Archambault, P., Gosselin, M., Gratton, Y., Bélanger S., Larouche, P., Nozais, C., Poulin, M., Simard, Y., Lovejoy, C., Juniper, S. 2015. Marine Biological Hotspots: Ecosystem Services and Susceptibility to Climate Change. ArcticNet Annual Research Compendium (2012-13) Chapter: Unpublished Chapter: Marine Biological Hotspots: Ecosystem Services and Susceptibility to Climate Change Publisher: ArcticNet Inc., Quebec City, Quebec, Canada Editors: ArcticNet.
Trouvé, R., Bunyavejchewin, S., Baker, P. 2020. Disentangling fire intensity and species’ susceptibility to fire in a species- rich seasonal tropical forest. Journal of Ecology, 108(4), pp.1664-1676. https://doi.org/10.1111/1365-2745.13343 DOI: https://doi.org/10.1111/1365-2745.13343
Tybirk, K., Nilsson, M., Michelsen, A., Kristensen, H., Shevtsova, A., Tune Strandberg, M., Johansson, M., Nielsen, K., Riis-Nielsen, T., Strandberg, B., Johnsen, I. 2000. Nordic Empetrum Dominated Ecosystems: Function and Susceptibility to Environmental Changes. AMBIO: A Journal of the Human Environment, 29(2), pp.90-97. https://doi.org/10.1579/0044-7447-29.2.90 DOI: https://doi.org/10.1579/0044-7447-29.2.90
Ulakpa, R., Okwu, V., Chukwu, K., and Eyankware, M. 2020. Landslide sucpectibility modellig in selected states across SE. Nigeria. Environment & Ecosystem Science, 4(1), pp.23-27. http://doi.org/10.26480/ees.01.2020.23.27 DOI: https://doi.org/10.26480/ees.01.2020.23.27
Umar, A., Kela, S., Abdulrahman, H. 2008. Susceptibility Of Mosquito Larvae To Conventional Insecticides In A Tropical Arid Ecosystem. Animal Research International, 3(1). https://doi.org/10.4314/ari.v3i1.40759 DOI: https://doi.org/10.4314/ari.v3i1.40759
USGS. 2019. United States Geological Survey. https://www.usgs.gov/ [Accessed 3 June 2022]
van Vliet, M., Jones, E., Flörke, M., Franssen, W., Hanasaki, N., Wada, Y., Yearsley, J. 2021. Global water scarcity including surface water quality and expansions of clean water technologies. Environmental Research Letters, 16(2), 024020. https://doi.org/10.1088/1748-9326/abbfc3 DOI: https://doi.org/10.1088/1748-9326/abbfc3
Vázquez, D., Simberloff, D. 2002. Ecological Specialization and Susceptibility to Disturbance: Conjectures and Refutations. The American Naturalist, 159(6), pp.606-623. https://doi.org/10.1086/339991 DOI: https://doi.org/10.1086/339991
Vogt, P., Riitters, K.H., Estreguil, C. et al. 2007. Mapping Spatial Patterns with Morphological Image Processing. Landscape Ecology 22, 171–177. https://doi.org/10.1007/s10980-006-9013-2 DOI: https://doi.org/10.1007/s10980-006-9013-2
Wang, J., Zhang, J., He, L., Zhao, Z. 2006. Influence of long- term exposure to simulated acid rain on development, reproduction and acaricide susceptibility of the carmine spider mite, Tetranychus cinnabarinus. Journal Of Insect Science, 6(19), 1-8. https://doi.org/10.1673/2006_06_19.1 DOI: https://doi.org/10.1673/2006_06_19.1
Wang, X., Blanchet, F.G. and Koper, N. 2014, Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods in Ecology and Evolution, 5: 634-646. https://doi.org/10.1111/2041-210X.12198 DOI: https://doi.org/10.1111/2041-210X.12198
Weeks, John R., Larson, Dennis P., Fugate, Debbie L. 2005. Patterns of Urban Land Use as Assessed by Satellite Imagery: An Application to Cairo, Egypt. National Research Council (US) Panel on New Research on Population and the Environment; Entwisle B, Stern PC, editors. Population, Land Use, and Environment: Research Directions. Washington (DC): National Academies Press (US); 2005. 11, Patterns of Urban Land Use as Assessed by Satellite Imagery: An Application to Cairo, Egypt. Available from: https://www.ncbi.nlm.nih.gov/books/NBK22958/ [Accessed 3 June 2022]
Weiskopf, S., Rubenstein, M., Crozier, L., Gaichas, S., Griffis, R., Halofsky, J. et al. 2020. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science Of The Total Environment, 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782 DOI: https://doi.org/10.1016/j.scitotenv.2020.137782
Zhang, J., Wei, J., Chen, Q. 2009. Mapping the farming- pastoral ecotones in China. Journal of Mountain Science, 6(1), pp.78-87. https://doi.org/10.1007/s11629-009-0221-5 DOI: https://doi.org/10.1007/s11629-009-0221-5
Downloads
Additional Files
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Mustafa Nur Istanbuly, Mohammad Kaboli, Sara Ahmadi, Gouhang Tian, Magdalena Michalak, Jabbarian Amiri Bahman
This work is licensed under a Creative Commons Attribution 4.0 International License.