Landscape Metrics Explain the Ecological Susceptibility of Terrestrial Ecosystems


  • Mustafa Nur Istanbuly University of Tehran, Faculty of Natural Resources, Department of Environmental Science, Karaj, Iran
  • Mohammad Kaboli University of Tehran, Faculty of Natural Resources, Department of Environmental Science, Karaj, Iran
  • Sara Ahmadi University of Tehran, Faculty of Natural Resources, Department of Environmental Science, Karaj, Iran
  • Gouhang Tian Henan Agricultural University, College of Landscape Architecture and Art, Henan, China
  • Magdalena Michalak University of Lodz, Faculty of Economics and Sociology, Department of Regional Economics and the Environment, Lodz, Poland
  • Bahman Jabbarian Amiri University of Lodz, Faculty of Economics and Sociology, Department of Regional Economics and the Environment, Lodz, Poland



Susceptibility, Landscape structure, Subjective, Objective, Modeling, Sensitivity, uncertainty


This study examines the effects of the change in the shape of landscape patches, known as landscape structure, on ecological susceptibility, which is defined using the object-oriented method. The aim is to determine whether ecological susceptibility is influenced by the shape of the landscape patches in the southern basin of the Caspian Sea. The multivariate linear regression approach is applied to discover the extent to which the mean, median, and weighted average of the landscape structure metrics can explain the total variations of the ecological susceptibility. To determine the optimal models, an intermodel comparison is conducted using the Akaike information criterion. Sensitivity and uncertainty analyses were performed to determine how sensitive ecological susceptibility is to changes in the variables of the models and how they behave under varying conditions. The models (0.64≥r2≥0.27, p ≤ 0.05) indicate that the landscape structure metrics can be applied to predict ecological susceptibility. Examining the mean, median, and weighted average of the landscape metrics in estimating ecological susceptibility also reveals that the models made by the mean and median values have less uncertainty than those developed by the weighted average. The results show that the regularity or irregularity in the shape of the landscape patches and the degree of contiguity of the land use/land cover patches can significantly affect ecological susceptibility. Closed deciduous broad-leaf forest patches, closed mixed forest patches, and open mixed forest patches can be considered crucial land use/land covers to estimate ecological susceptibility.


Abdel Kawy, Wael., Belal, Abdelaziz. 2011. GIS to Assess the Environmental Sensitivity for Desertification in Soil Adjacent to El-Manzala Lake, East of Nile Delta, Egypt. American-Eurasian Journal of Agricultural & Environmental Sciences. 10. 844-856

Abuzaid, A. S., AbdelRahman, M. A. E., Fadl, M. E., Scopa, A. 2021. Land Degradation Vulnerability Mapping in a Newly- Reclaimed Desert Oasis in a Hyper-Arid Agro-Ecosystem Using AHP and Geospatial Techniques. Agronomy, 11(7), 1426. DOI:

Afzali, S., Khanamani, A., Maskooni, E., Berndtsson, R. 2021. Quantitative Assessment of Environmental Sensitivity to Desertification Using the Modified MEDALUS Model in a Semiarid Area. Sustainability, 13(14), 7817. DOI:

Ahearn, D., Sheibley, R., Dahlgren, R., Anderson, M., Johnson, J., Tate, K. 2005. Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California. Journal of Hydrology, 313(3-4), pp.234-247. DOI:

Al-Adamat, R. 2017. Modelling Surface Water Susceptibility to Pollution Using GIS. Journal Of Geographic Information System, 09(03), 293-308. DOI:

Amiri, B.J. 2019. Environmental Impact Assessment, 2nd Edition. University Press, University of Tehran, 228 p.

Amiri, B.J. 2020. Environmental Modeling 2nd Edition. University Press, University of Tehran, 150 p.

Arora, A., Pandey, M., Mishra, V., Kumar, R., Rai, P., Costache, R. et al. 2021. Comparative evaluation of geospatial scenario-based land change simulation models using landscape metrics. Ecological Indicators, 128, 107810. DOI:

Baker, W.L., Cai, Y. 1992. The role programs for multiscale analysis of landscape structure using the GRASS geographical information system. Landscape Ecology 7 (4), 291–302. DOI:

Batar, A. K., Shibata, H., Watanabe, T. 2021. A Novel Approach for Forest Fragmentation Susceptibility Mapping and Assessment: A Case Study from the Indian Himalayan Region. Remote Sensing, 13(20), 4090. DOI:

Belsky, J. 2013. Differential Susceptibility to Environmental Influences. ICEP 7, 15–31. DOI:

Belsky, J., Pluess, M. 2016. Differential susceptibility to environmental influences. In D. Cicchetti (Ed.), Developmental psychopathology: Developmental neuroscience (pp. 59–106). John Wiley & Sons, Inc. DOI:

Beroya-Eitner, M. 2016. Ecological vulnerability indicators. Ecological Indicators, 60, pp.329-334. DOI:

Bourgoin, Clement. 2019. A framework for evaluating forest ecological vulnerability in tropical deforestation fronts from the assessment of forest degradation in a landscape approach: Case studies from Brazil and Vietnam. Geography. Theses, Institut agronomique, vétérinaire et forestier de France. English.

Brandt, J. and Geeson, N. 2015. Desertificationindicatorsystem for Mediterranean Europe. In: Dykes, A.P., Mulligan M., Wainwright J. (eds). Monitoring and Modelling Dynamic Environments. John Wiley & Sons, Ltd. pp. 121-137. DOI:

Brock, J., Lavoie, D., Poore, R. 2009. Introduction to Northern Gulf of Mexico ecosystem change and hazards susceptibility. Geo-Marine Letters, 29(6), pp.343-347. DOI:

Brown, M., Lappin, M., Brown, J., Munkhtsog, B., Swanson, W. 2005. Exploring The Ecologic Basis For Extreme Susceptibility Of Pallas’ Cats (Otocolobus Manual) To Fatal Toxoplasmosis. Journal of Wildlife Diseases, 41(4), pp.691-700. DOI:

Buchhorn, M., Smets, B., Bertels, L., Lesiv, M., Tsendbazar, N-E., Herold, M., Fritz, S. 2019. Copernicus Global Land Service: Land Cover 100m, epoch “2015”, Globe (Version V2.0.2) [10.5281/zenodo.3243509]. Zenodo.

Burnham, K.P., Anderson, D.R. 2004. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research, 33(2), 261–304. DOI:

Butler, T-J., Likens, G.E. 2019. “acid rain”. Encyclopedia Britannica, [Accessed 3 June 2022]

Cale, P.G., Hobbs, R.J. 1994 Landscape heterogeneity indices: Problems of scale and applicability, with particular reference to animal habitat description. Pacific Conservation Biology 1: 183–193. DOI:

Birkmann, J., et al. 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press. pp. 65–108.

Cardona, O., Van Aalst, M., Birkmann, J., Fordham, M., McGregor, G., Perez, R., Thomalla, F. 2012. Determinants of Risk: Exposure and Vulnerability. In: Field, C., Barros, V., Stocker, T., Dahe Q. (eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (pp. 65- 108). Cambridge: Cambridge University Press. DOI:

Chatterjee, S., Hadi, A.S., Price, B. 2000. The Use of Regression Analysis by Example. John Wiley and Sons, New York, USA. DOI:

Cushman, S.A., and McGarigal, K. 2019 Metrics and Models for Quantifying Ecological Resilience at Landscape Scales. Frontiers in Ecology and Evolution 7:440. DOI:

Daoud, Jamal I. 2017. Multicollinearity and Regression Analysis. Journal of Physics: Conf. Ser. 949 012009. Conference Series, 949, 012009. DOI:

Darwish, T., Zdruli, P., Saliba, R., Awad, M., Shaban, A., Faour, G. 2012. Vulnerability to Desertification in Lebanon Based on Geo-information and Socioeconomic Conditions. Journal of Environmental Science and Engineering B. ISSN 1934-8932.

De Lange, H.J., Sala, S., Vighi, M., Faber, J.H. 2010. Ecological vulnerability in risk assessment – a review and perspectives. Sci. Total Environ. 408, 3871–3879. DOI:

De Lange, H.J.D., Lahr, J., Van der Pol, J.J.C., Wessels, Y., Faber, J.H. 2009. Ecological vulnerability in wildlife: an expert judgment and multicriteria analysis tool using ecological traits to assess the relative impact of pollutants. Environ. Toxicol Chemi. 28, 2233–2240, DOI:

De Paola, F. Ducci, Daniela Giugni, Maurizio. 2013. Desertification and erosion sensitivity. A case study in southern Italy: The Tusciano Rivercatchment. Environmental Earth Sciences. 70. 2179-2190. DOI:

Destoumieux-Garzón, D., Matthies-Wiesler, F., Bierne, N., Binot, A., Boissier, J., Devouge, A. et al. 2022. Getting out of crises: Environmental, social-ecological and evolutionary research is needed to avoid future risks of pandemics. Environment International, 158, 106915. DOI:

Dinh Van, K., Janssens, L., Debecker, S., De Jonge, M., Lambret, P., Nilsson-Örtman, V. et al. 2013. Susceptibility to a metal under global warming is shaped by thermal adaptation along a latitudinal gradient. Global Change Biology, 19(9), 2625-2633. DOI:

Djeddaoui, F., Chadli, M., Gloaguen, R. 2017. Desertification Susceptibility Mapping Using Logistic Regression Analysis in the Djelfa Area, Algeria. Remote Sensing, 9(10), 1031. DOI:

Evans, M., Scavia, D. 2013. Exploring estuarine eutrophication sensitivity to nutrient loading. Limnology and Oceanography, 58(2), pp.569-578. DOI:

Ferrara, A., Bellotti A., Faretta S., Mancino G., Taberner M. 1999. Identification and assessment of environmentally sensitive areas by remote sensing. MEDALUS III 2.6.2. OU Final Report. King’s College, London. 2:397–429.

Forman, RTT., Godron, M. 1986. Landscape Ecology. New York: Wiley. pp. 90. DOI:

Frazier, Amy E., Kedron, Peter. 2017. Landscape Metrics: Past Progress and Future Directions. Current Landscape Ecology Reports, 2(3), 63–72. doi: DOI:

Gandhi, G., Parthiban, S., Thummalu, N., Christy, A. 2015. Ndvi: Vegetation Change Detection Using Remote Sensing and Gis – A Case Study of Vellore District. Procedia Computer Science, 57, 1199-1210. DOI:

GIZ. 2013. Guide méthodologique Approche spatiale multifactorielle d’analyse de la vulnérabilité des écosystèmes face au changement climatique Cas de la subéraie en Tunisie. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)—GmbH; Ministère fédéral allemand de la Coopération Economique et du Développement (BMZ) and Appui à la mise en oeuvre de la Convention Cadre des Nations Unies sur le Changement Climatique (CCNUCC) en Tunisie, Tunisia.

Grennfelt, P., Engleryd, A., Forsius, M., Hov, Ø., Rodhe, H., Cowling, E. 2020. Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio, 49(4), 849-864. DOI:

Guilan Meteorological Organization. 2019. I.R. of Iran Meteorological Organization, Rasht, Iran. [Accessed 3 June 2022]

Halbac-Cotoara-Zamfir, R., Polinesi, G., Chelli, F., Salvati, L., Bianchini, L., Marucci, A., Colantoni, A. 2022. Found in Complexity, Lost in Fragmentation: Putting Soil Degradation in a Landscape Ecology Perspective. Int. J. Environ. Res. Public Health 2022, 19, 2710. DOI:

Hu, Y., Han, Y., Zhang, Y. 2020. Land desertification and its influencing factors in Kazakhstan. Journal Of Arid Environments, 180, 104203. DOI:

Huang, J., Wang, Y., Zhang, L. 2022. Identifying Spatial Priority of Ecological Restoration Dependent on Landscape Quality Trends in Metropolitan Areas. Land, 11, 27. DOI:

Istanbuly, M. N., Dostál, T., Jabbarian Amiri, B. 2021. Modeling the Soil Erosion Regulation Ecosystem Services of the Landscape in Polish Catchments. Water, 13(22), 3274. DOI:

IUCN. 2010. IUCN Red List of Threatened Species. [Accessed 3 June 2022]

Jaeger, J.A. 2000. Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecology 15, 115–130. DOI:

Jianping, L., Minrong, L., Jinnan, W., Jianjian, L., Hongwen, S., Maoxing, H. 2014. Global Environmental Issues and Human Wellbeing. Current Chinese Economic Report Series, 3-21. DOI:

Keesing, F., Belden, L., Daszak, P., Dobson, A., Harvell, C., Holt, R. et al. 2010. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468(7324), 647-652. DOI:

Klimkina, Iryna. 2013. Environmental Susceptibility and Resilience Due to Nuclear Anomalies in The Buccal Cells of Children and Adults from Technogenically - Loaded Regions of Ukraine. The 3rd International Geography Symposium, Kemer, Antalya, TURKEY. pp. 137-142. [Accessed 3 June 2022]

Knelman, J., Schmidt, S., Garayburu-Caruso, V., Kumar, S., Graham, E. 2019. Multiple, Compounding Disturbances in a Forest Ecosystem: Fire Increases Susceptibility of Soil Edaphic Properties, Bacterial Community Structure, and Function to Change with Extreme Precipitation Event. Soil Systems, 3(2), p.40. DOI:

Kosmas, C., Kirkby M., Geeson N. 1999b. Manual on: key indicators of desertification and mapping environmentally sensitive areas to desertification. Energy, environment and sustainable development, EUR. European Commission, Brussels, ISBN 92-828-6349-2. p 18882. [Accessed 3 June 2022]

Kosmas, C., Poesen J., Briasouli H. 1999c. Key indicators of desertification at the ESA scale. In: Manual on key indicators of desertification and mapping ESAs to desertification. MEDALUS III Project. King’s College, London.

Kosmas, C., Ferrara, A., Briassouli, H., Imeson, A. 1999a. Methodology for mapping environmentally sensitive areas to desertification. In: The Medalus project. Mediterranean desertification and land use. Manual on key indicators of desertification and mapping environmentally sensitive areas to desertification. Eds. Kosmas, C., Kirkby, M., Geeson, M. E.U 18882. Pp 31–47 ISBN 92-828-6349-2.

Krebs, Charles. J. 2009. Ecology: The Experimental Analysis of Distribution and Abundance, 6th edition, Pearson, ISBN-13: 9780321688149, 672 pp.

Kun, Á., Oborny, B. Dieckmann, U. 2019. Five main phases of landscape degradation revealed by a dynamic mesoscale model analysing the splitting, shrinking, and disappearing of habitat patches. Sci Rep 9, 11149. DOI:

Kupfer, J. A. 2012. Landscape ecology and biogeography: Rethinking landscape metrics in a post-FRAGSTATS landscape. Progress in Physical Geography, 36(3), 400–420. DOI:

Kupková, L., Potůčková, M., Lhotáková, Z., Albrechtová, J. 2018. Forest cover and disturbance changes, and their driving forces: A case study in the Ore Mountains, Czechia, heavily affected by anthropogenic acidic pollution in the second half of the 20th century. Environmental Research Letters, 13(9), 095008. DOI:

Leitão, A.B., Miller, J., Ahern, J., McGarigal, K. 2012. Measuring Landscapes: A Planner’s Handbook. Island Press. ISBN: 1-4020-3978-6.

Matthews, W. 1975. Objective and Subjective Judgements in Environmental Impact Analysis. Environmental Conservation, 2(2), pp.121-131. DOI:

Mcgarigal, K. 2015. FRAGSTATS Help. [Accessed 3 June 2022]

McGarigal, K., Marks, B.J. 1995. FRAGSTATS: Spatial Analysis Program for Quantifying Landscape Structure. USDA Forest Service General Technical Report PNW-GTR-351. DOI:

McGarigal, K., Tagil, S. Cushman, S.A. 2009. Surface metrics: an alternative to patch metrics for the quantification of landscape structure. Landscape Ecology 24, 433–450. DOI:

Mélo, A., Justino, F., Lemos, C., Sediyama, G., and Ribeiro, G. 2011. Suscetibilidade do ambiente a ocorrências de queimadas sob condições climáticas atuais e de futuro aquecimento global. Revista Brasileira de Meteorologia, 26(3), pp.401-418. DOI:

Milecka, K., Mirosław-Grabowska, J., Zawisza, E., Kowalewski, G. 2020. Susceptibility of small boreal lakes to environmental changes as inferred from organic sediments of Lake Talvilampi (Finland). The Holocene, 30(3), 458–473. DOI:

Mirghaed, F. A., Souri, B., Mohammadzadeh, M. et al. 2018. Evaluation of the relationship between soil erosion and landscape metrics across Gorgan Watershed in northern Iran. Environmental Monitoring Assessment 190, 643. DOI:

Mohammadi, A., Fatemizadeh, F.2021. Quantifying Landscape Degradation Following Construction of a Highway Using Landscape Metrics in Southern Iran. Frontiers in Ecology and Evolution. 9:721313. DOI:

Moser, D., Zechmeister, H.G., Plutzar, C. et al. 2002. Landscape patch shape complexity as an effective measure for plant species richness in rural landscapes. Landscape Ecology 17, 657–669. DOI:

Myers, R. 1983. Site Susceptibility to Invasion by the Exotic Tree Melaleuca Quinquenervia in Southern Florida. The Journal of Applied Ecology, 20(2), DOI:

Nascimento, V., Yesiller, N., Clarke, K., Ometto, J., Andrade, P., Sobral, A. 2017. Modeling the environmental susceptibility of landfill sites in California. GIScience & Remote Sensing, 54(5), pp.657-677. DOI:

O’Neill, R., Krummel, J., Gardner, R., Sugihara, G., Jackson, B., Deangelis, D., Milne, B., Turner, Monica, Zygmunt, B., Christensen, S., Dale, Virginia, Graham, R. 1988. Indices of Landscape Pattern. Landscape Ecology. DOI:

Oguntola, E.A., Odeyemi, O.O., Eniola, A.D., et al. 2019. Susceptibility of six local rice cultivars and efficacy of eco- friendly botanical to sitophilus oryzae (L) (Coleoptera: Curculionidae). Plants & Agriculture Research 9(1):65-71.

Ouma, K., Shane, A., Syampungani, S. 2022. Aquatic Ecological Risk of Heavy-Metal Pollution Associated with Degraded Mining Landscapes of the Southern Africa River Basins: A Review. Minerals, 12(2), 225. DOI:

Özcan, O., Musaoğlu, N. Türkeş, M. 2018. Assessing vulnerability of a forest ecosystem to climate change and variability in the western Mediterranean sub-region of Turkey. Journal of Forestry Research 29, 709–725. DOI:

Pereira, C., Milanes, C., Correa, I., Pranzini, E., Cuker, B., Botero, C. 2022. A geomorphological model of susceptibility to the effect of human interventions for environmental licensing determination (SHIELD). Geoscience Frontiers, 13(2), 101343. DOI:

Purevdorj, TS., Tateishi, R., Ishiyama, T., Honda, Y. 1998. Relationships between percent vegetation cover and vegetation indices. International Journal of Remote Sensing 19(18), 3519–3535. DOI:

Qamar, N., Panhwar, S., Wang, P. 2019. Indicators of the ecological stress and environmental susceptibility of Keenjhar Lake, Sindh, Pakistan. Lakes & Reservoirs: Research & Management, 24(4), pp.394-401. DOI:

Renard, Q., Pélissier, R., Ramesh, B., and Kodandapani, N. 2012. Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. International Journal of Wildland Fire, 21(4), p.368. DOI:

Rutledge, D.T. 2003. Landscape Indices as Measures of the Effects of Fragmentation: Can Pattern Reflect Process? Department of Conservation, Wellington. New Zealand. ISBN: 0-478-22380-3. 27p.

Salvati, L., Mancino, G., Zuliani, E., Sateriano, A., Zitti, M., Ferrara, A. 2013. An expert system to evaluate environmental sensitivity: A local-scale approach to desertification risk. Applied Ecology and Environmental Research. 11. 611-627. ISSN: 1589-1623. DOI:

Scavia, D., Liu, Y. 2009. Exploring Estuarine Nutrient Susceptibility. Environmental Science & Technology, 43(10), pp.3474-3479. DOI:

Song, W., Mu, X., Ruan, G., Gao, Z., Li, L., Yan, G. 2017. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. International Journal of Applied Earth Observation and Geoinformation, (58), 168–176. DOI:

Straub, L., Williams, G., Pettis, J., Fries, I., Neumann, P. 2015. Superorganism resilience: eusociality and susceptibility of ecosystem service providing insects to stressors. Current Opinion in Insect Science, 12, pp.109-112. DOI:

Sun, L., Ma, C., Li, Y. 2019. Multiple geo-environmental hazards susceptibility assessment: a case study in Luoning County, Henan Province, China. Geomatics, Natural Hazards, and Risk, 10(1), pp.2009-2029. DOI:

Tao, F., Hayashi, Y., Lin, E. 2002. Water, Air, And Soil Pollution, 140(1/4), 247-260. DOI:

Tejaswi, Giri. 2007. Manual of deforestation, degredation, and fragmentation using remote sensing and GIS. FAO: Food and Agriculture Organization of the United Nations, strengthening monitoring, assessement ad reporting on sustainable forest management in Asia (GCP/INT/988/JPN). [Accessed 3 June 2022]

Tremblay, J.E., Archambault, P., Gosselin, M., Gratton, Y., Bélanger S., Larouche, P., Nozais, C., Poulin, M., Simard, Y., Lovejoy, C., Juniper, S. 2015. Marine Biological Hotspots: Ecosystem Services and Susceptibility to Climate Change. ArcticNet Annual Research Compendium (2012-13) Chapter: Unpublished Chapter: Marine Biological Hotspots: Ecosystem Services and Susceptibility to Climate Change Publisher: ArcticNet Inc., Quebec City, Quebec, Canada Editors: ArcticNet.

Trouvé, R., Bunyavejchewin, S., Baker, P. 2020. Disentangling fire intensity and species’ susceptibility to fire in a species- rich seasonal tropical forest. Journal of Ecology, 108(4), pp.1664-1676. DOI:

Tybirk, K., Nilsson, M., Michelsen, A., Kristensen, H., Shevtsova, A., Tune Strandberg, M., Johansson, M., Nielsen, K., Riis-Nielsen, T., Strandberg, B., Johnsen, I. 2000. Nordic Empetrum Dominated Ecosystems: Function and Susceptibility to Environmental Changes. AMBIO: A Journal of the Human Environment, 29(2), pp.90-97. DOI:

Ulakpa, R., Okwu, V., Chukwu, K., and Eyankware, M. 2020. Landslide sucpectibility modellig in selected states across SE. Nigeria. Environment & Ecosystem Science, 4(1), pp.23-27. DOI:

Umar, A., Kela, S., Abdulrahman, H. 2008. Susceptibility Of Mosquito Larvae To Conventional Insecticides In A Tropical Arid Ecosystem. Animal Research International, 3(1). DOI:

USGS. 2019. United States Geological Survey. [Accessed 3 June 2022]

van Vliet, M., Jones, E., Flörke, M., Franssen, W., Hanasaki, N., Wada, Y., Yearsley, J. 2021. Global water scarcity including surface water quality and expansions of clean water technologies. Environmental Research Letters, 16(2), 024020. DOI:

Vázquez, D., Simberloff, D. 2002. Ecological Specialization and Susceptibility to Disturbance: Conjectures and Refutations. The American Naturalist, 159(6), pp.606-623. DOI:

Vogt, P., Riitters, K.H., Estreguil, C. et al. 2007. Mapping Spatial Patterns with Morphological Image Processing. Landscape Ecology 22, 171–177. DOI:

Wang, J., Zhang, J., He, L., Zhao, Z. 2006. Influence of long- term exposure to simulated acid rain on development, reproduction and acaricide susceptibility of the carmine spider mite, Tetranychus cinnabarinus. Journal Of Insect Science, 6(19), 1-8. DOI:

Wang, X., Blanchet, F.G. and Koper, N. 2014, Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods in Ecology and Evolution, 5: 634-646. DOI:

Weeks, John R., Larson, Dennis P., Fugate, Debbie L. 2005. Patterns of Urban Land Use as Assessed by Satellite Imagery: An Application to Cairo, Egypt. National Research Council (US) Panel on New Research on Population and the Environment; Entwisle B, Stern PC, editors. Population, Land Use, and Environment: Research Directions. Washington (DC): National Academies Press (US); 2005. 11, Patterns of Urban Land Use as Assessed by Satellite Imagery: An Application to Cairo, Egypt. Available from: [Accessed 3 June 2022]

Weiskopf, S., Rubenstein, M., Crozier, L., Gaichas, S., Griffis, R., Halofsky, J. et al. 2020. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science Of The Total Environment, 733, 137782. DOI:

Zhang, J., Wei, J., Chen, Q. 2009. Mapping the farming- pastoral ecotones in China. Journal of Mountain Science, 6(1), pp.78-87. DOI:



Additional Files



How to Cite

Istanbuly, M. N., Kaboli, M., Ahmadi, S., Tian, G., Michalak, M., & Amiri, B. J. (2022). Landscape Metrics Explain the Ecological Susceptibility of Terrestrial Ecosystems. Landscape Online, 97, 1101.