Assessing Rice Production Sustainability under Future Landuse and Population in Deli Serdang Regency, Indonesia
DOI:
https://doi.org/10.3097/LO.2022.1103Keywords:
landuse change, population projection, rice production sustainability, scenario-based simulationAbstract
Rice is the staple food and its cultivation requires a specific land condition. The population growth, urbanization, and plantation expansion together with socio-economic development are the driving factors of the riceland decline in Deli Serdang Regency of North Sumatera, Indonesia. As a consequence, likely availability and sustainability of rice production are threatened. Hence, it is important to understand how the future landuse and population change will affect the riceland area and production. In the lack of spatially simulated information for the future which could be useful in planning the riceland areas, the study objectives were to project the landuse change by 2040 under three scenarios, Business as Usual (BAU), Potential Riceland Protection (PRP) and Conservation Oriented (CO), and to investigate the impact of consumption demand on the sustainability of rice production. Landsat satellite data of 2009 and 2018, several spatial GIS data, and survey data were analyzed in ArcGIS, Dyna-CLUE, and SPSS software to generate the landuse classification and to simulate the future landuses; while the population projection by 2040 was derived from a Geometric Model. The results showed that forest and riceland areas will decrease with the continuous increase of plantation and urban areas under BAU scenario, but could be protected and increased under PRP scenario. The sustainability of rice production depends not only on the total riceland area, but also the productivity, the population growth, the consumption rate, and the policy. The simulated results of three scenarios serve as an important input to planning for protecting the riceland areas and thus sustained rice production in Deli Serdang Regency.
References
Adam, A.H.M., Elhag, A.M.H., Salih, Abdelrahim, M., 2013. Accuracy Assessment of Land Use & Land Cover Classificatio (LU/LC) “Case study of Shomadi area-Renk County-Upper Nile State, South Sudan.” Int. J. Sci. Reserch Publ. 3, 1–6.
Afriyanti, D., Kroeze, C., Saad, A., 2016. Indonesia palm oil production without deforestation and peat conversion by 2050. Sci. Total Environ. 557-558, 562–570. https://doi.org/10.1016/j.scitotenv.2016.03.032
Agusalim, L., 2016. Projection of Labor Needs and Productivity to Reduce Unemployment. J. Ekon. dan Kebijak. 9, 297–310.
Alam, M.J., Al-Mahmud, A., Islam, M.A., Hossain, M.F., Ali, M.A., Dessoky, E.S., El-Hallous, E.I., Hassan, M.M., Begum, N., Hossain, A., 2021. Crop diversification in rice—based cropping systems improves the system productivity, profitability and sustainability. Sustain. 13. https://doi.org/10.3390/su13116288
Andani, A., 2018. Analisis prakiraan produksi dan konsumsi beras di Indonesia. J. AGRISEP 7, 1–18. https://doi.org/10.31186/jagrisep.7.2.1-18
Apriyana, Y., Surmaini, E., Estiningtyas, W., Pramudia, A., Ramadhani, F., Suciantini, S., Susanti, E., Purnamayani, R., Syahbuddin, H., 2021. The integrated cropping calendar information system: A coping mechanism to climate variability for sustainable agriculture in Indonesia. Sustain. 13, 1–22. https://doi.org/10.3390/su13116495
Arjasakusuma, S., Kusuma, S.S., Rafif, R., Saringatin, S., Wicaksono, P., 2020. Combination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of west and Central Java Provinces, Indonesia. ISPRS Int. J. Geo-Information 9. https://doi.org/10.3390/ijgi9110663
Basyuni, M., Harahap, F.K., Wati, R., Putri, L.A.P., 2018. Effect of mangrove rehabilitation on socio-cultural of pulau sembilan society, North Sumatera, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 126. https://doi.org/10.1088/1755-1315/126/1/012115
BPS-DeliSerdang, 2018. Deli Serdang Regency in Figure 2018.
BPS-SumateraUtara, 2018. The Survey of Harvesting Rice Grain to Milled Rice in 2018.
Capone, R., El Bilali, H., Debs, P., Cardone, G., Driouech, N., 2014. Food System Sustainability and Food Security: Connecting the Dots. J. Food Secur. 2, 13–22. https://doi.org/10.12691/jfs-2-1-2
Deng, J.S., Wang, K., Hong, Y., Qi, J.G., 2009. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 92, 187–198. https://doi.org/10.1016/j.landurbplan.2009.05.001
El-Khoury, A., Seidou, O., Lapen, D.R., Sunohara, M., Zhenyang, Q., Mohammadian, M., Daneshfar, B., 2014. Prediction of land-use conversions for use in watershed-scale hydrological modeling: A Canadian case study. Can. Geogr. 58, 499–516. https://doi.org/10.1111/cag.12105
Firman, T., 2004. Major issues in Indonesia’s urban land development. Land use policy 21, 347–355. https://doi.org/10.1016/j.landusepol.2003.04.002
Fusco, D., Giordano, P., Greco, M., Moretti, V., 2014. Sustainable Agriculture in Eu . a Method for a Synthetic Classification of the Nuts2 Areas, in: Agri-Food and Rural Innovations for Healthier Societies. pp. 1–6.
Gong, W., Fang, S., Yang, G., Ge, M., 2017. Using a hidden markov model for improving the Spatial-temporal consistency of time series land cover classification. ISPRS Int. J. Geo- Information 6. https://doi.org/10.3390/ijgi6100292
Guo, F., Lenoir, J., Bonebrake, T.C., 2018. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1–7. https://doi.org/10.1038/s41467-018-03786-9
Han, H., Yang, C., Song, J., 2015. Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China. Sustainability 7, 4260–4279. https://doi.org/10.3390/su7044260
Imam, E., 2019. Remote Sensing and GIS Module: Colour Composite Images and Visual Image Interpretation. p. 20 pages.
Iwona, C., Andrzej, B., 2022. A dynamic evaluation of landscape transformations based on land cover data. Landsc. Online 97. https://doi.org/https://doi.org/10.3097/LO.2022.1097
Jiang, T., Liu, X., Wu, L., 2018. Method for Mapping Rice Fields in Complex Landscape Areas Based on Pre-Trained Convolutional Neural Network from HJ-1 A / B Data. ISPRS Int. J. Geo-Information 7. https://doi.org/10.3390/ijgi7110418
Lasminingrat, L., Efriza, 2020. The development of national food estate: The Indonesian food crisis anticipation strategy. J. Pertahanan Bela Negara 10, 229–249.
Lindarto, D., Sirojuzilam, S., Badaruddin, B., Aulia, D.N., 2018. The place character as land use change determinant in Deli Serdang. IOP Conf. Ser. Earth Environ. Sci. 126. https://doi.org/10.1088/1755-1315/126/1/012080
Margono, B.A., Potapov, P. V., Turubanova, S., Stolle, F., Hansen, M.C., 2014. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Chang. 4, 730–735. https://doi.org/10.1038/nclimate2277
Minh, H.V.T., Avtar, R., Mohan, G., Misra, P., Kurasaki, M., 2019. Monitoring and mapping of rice cropping pattern in flooding area in the Vietnamese Mekong delta using Sentinel-1A data: A case of an Giang province. ISPRS Int. J. Geo-Information 8. https://doi.org/10.3390/ijgi8050211
Mohammady, M., Moradi, H.R., Zeinivand, H., Temme, A.J.A.M., Yazdani, M.R., Pourghasemi, H.R., 2018. Modeling and assessing the effects of land use changes on runoff generation with the CLUE-s and WetSpa models. Theor. Appl. Climatol. 133, 459–471. https://doi.org/10.1007/s00704-017-2190-x
Mohawesh, Y., Taimeh, A., Ziadat, F., 2015. Effects of land use changes and soil conservation intervention on soil properties as indicators for land degradation under a Mediterranean climate. Solid Earth 6, 857–868. https://doi.org/10.5194/se-6-857-2015
Morawicki, R.O., Díaz González, D.J., 2018. Food sustainability in the context of human behavior. Yale J. Biol. Med. 91, 191–196.
Ningal, T., Hartemink, A.E., Bregt, A.K., 2008. Land use change and population growth in the Morobe Province of Papua New Guineabetween 1975 and 2000. J. Environ. Manage. 87, 117–124. https://doi.org/10.1016/j.jenvman.2007.01.006
Overmars, K.P., Verburg, P.H., Veldkamp, T. (A ), 2007. Comparison of a deductive and an inductive approach to specify land suitability in a spatially explicit land use model. Land use policy 24, 584–599. https://doi.org/10.1016/j.landusepol.2005.09.008
Panuju, D.R., Mizuno, K., Trisasongko, B.H., 2013. The dynamics of rice production in Indonesia 1961–2009. J. Saudi Soc. Agric. Sci. 12, 27–37. https://doi.org/10.1016/j.jssas.2012.05.002
Partoyo, Shrestha, R.P., 2013. Monitoring farmland loss and projecting the future land use of an urbanized watershed in Yogyakarta, Indonesia. J. Land Use Sci. 8, 59–84. https://doi.org/10.1080/1747423X.2011.620993
Pramono, M.S., Supriana, T., Kesuma, S.I., 2015. Riceland Conversion Analysis and Prediction of Production and Consumption of Rice in Deli Serdang Regency. J. Soc. Econ. Agric. Agribus. 4, 1–13.
Prayitno, G., Dinanti, D., Hidayana, I.I., Nugraha, A.T., 2021. Place attachment and agricultural land conversion for sustainable agriculture in Indonesia. Heliyon 7, e07546. https://doi.org/10.1016/j.heliyon.2021.e07546
Premanandh, J., 2011. Factors affecting food security and contribution of modern technologies in food sustainability. J. Sci. Food Agric. 91, 2707–2714. https://doi.org/10.1002/jsfa.4666
Rana, S., Sarkar, S., 2021. Prediction of urban expansion by using land cover change detection approach. Heliyon 7, e08437. https://doi.org/10.1016/j.heliyon.2021.e08437
Salazar, E., Henríquez, C., Sliuzas, R., Qüense, J., 2020. Evaluating spatial scenarios for sustainable development in Quito, Ecuador. ISPRS Int. J. Geo-Information 9. https://doi.org/10.3390/ijgi9030141
Sari, R.K., 2014. Analisis impor beras di Indonesia. Econ. Dev. Anal. J. 3, 320–326.
Satterthwaite, D., McGranahan, G., Tacoli, C., 2010. Urbanization and its implications for food and farming. Philos. Trans. R. Soc. B Biol. Sci. 365, 2809–2820. https://doi.org/10.1098/rstb.2010.0136
Schmid, M., Heinimann, A., Zaehringer, J.G., 2021. Patterns of land system change in a Southeast Asian biodiversity hotspot. Appl. Geogr. 126, 102380. https://doi.org/10.1016/j.apgeog.2020.102380
Shrestha, S., Bhatta, B., Shrestha, M., Shrestha, P.K., 2018. Integrated assessment of the climate and landuse change impact on hydrology and water quality in the Songkhram River Basin, Thailand. Sci. Total Environ. 643, 1610–1622. https://doi.org/10.1016/j.scitotenv.2018.06.306
Siagian, D.R., Marbun, T., Hermanto, C., Alcantara, A.J., 2015. Landuse Conversion Impact Assessment on Landscape Provisioning Service for Rice Sufficiency in Langkat Regency, Indonesia. Procedia Environ. Sci. 24, 3–14. https://doi.org/10.1016/j.proenv.2015.03.002
Sunitha, A., Suresh, B.G., 2015. Satellite Image Classification Methods and Techniques: A Review. Int. J. Comput. Appl. 119, 20–25. https://doi.org/10.1021/acs.orglett.7b02266
Thakur, N., Maheshwari, D., 2017. A Review of Image Classification Techniques. Int. Res. J. Eng. Technol. 4, 1588– 1591.
Tilahun, A., Teferie, B., 2015. Accuracy Assessment of Land Use Land Cover Classification using Google Earth. Am. J. Environ. Prot. 4, 193–198. https://doi.org/10.11648/j.ajep.20150404.14
Verburg, P., Steeg, J. Van De, Schulp, N., 2005. Manual for the CLUE-Kenya application 1–54.
Verburg, P.H., Overmars, K.P., 2009. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna- CLUE model. Landsc. Ecol. 24, 1167–1181. https://doi.org/10.1007/s10980-009-9355-7
Verburg, P.H., Schot, P.P., Dijst, M.J., Veldkamp, A.T., 2004. Land use change modelling: Current practice and research priorities. GeoJournal 61, 309–324. https://doi. org/10.1007/s10708-004-4946-y
Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., Mastura, S.S.A., 2002. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manage. 30, 391–405. https://doi.org/10.1007/s00267-002-2630-x
Verburg, P.H., Veldkamp, A., 2004. Projecting landuse transitions at forest in the Philippines at two spatial scales. Landsc. Ecol. 19, 77–98. https://doi.org/10.1023/B:LAND.0000018370.57457.58
Wang, M., Sun, X., Fan, Z., Yue, T., 2019. Investigation of future land use change and implications for cropland quality: The case of China. Sustain. 11, 1–18. https://doi.org/10.3390/su10023327
Zaeroni, R., Rustariyuni, S., 2016. Pengaruh produksi beras, konsumsi beras dan cadangan devisa terhadap impor beras di Indonesia. E-Jurnal Ekon. Pembang. Univ. Udayana 5, 993–1010.
Zang, S., Wu, C., Liu, H., Na, X., 2011. Impact of urbanization on natural ecosystem service values: A comparative study. Environ. Monit. Assess. 179, 575–588. https://doi.org/10.1007/s10661-010-1764-1
Zhang, Z., Zhang, Y., Yu, X., Lei, L., Chen, Y., Guo, X., 2021. Evaluating natural ecological land change in function- oriented planning regions using the national land use survey data from 2009 to 2018 in China. ISPRS Int. J. Geo- Information 10. https://doi.org/10.3390/ijgi10030172
Zhong, T.Y., Huang, X.J., Zhang, X.Y., Wang, K., 2011. Temporal and spatial variability of agricultural land loss in relation to policy and accessibility in a low hilly region of southeast China. Land use policy 28, 762–769. https://doi.org/10.1016/j.landusepol.2011.01.004
Zul, F., Hudalah, D., Rahayu, P., Woltjer, J., 2014. Extended urbanization in small and medium-sized cities: The case of Cirebon , Indonesia. Habitat Int. 42, 1–10. https://doi.org/10.1016/j.habitatint.2013.10.003
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Deddy Romulo Siagian, Rajendra P Shrestha, Imelda Marpaung, Delima Napitupulu, Lermansius Haloho, Sortha Simatupang, Khadijah EL Ramija, Setia Sari Girsang
This work is licensed under a Creative Commons Attribution 4.0 International License.